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1University of Pécs, Faculty of Sciences, Hungary
papm@gamma.ttk.pte.hu
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Sampling and interpolation

For band-limited signals there is a classical result, the Whittaker-
Kotelnikov-Shannon sampling theorem, which says that f can
be reconstructed from samples at nπ/b by the formula f (t) =∑∞

n=−∞ f (nπ/b) sin b(t−nπ/b)
b(t−nπ/b) .

This holds for b-band-limited signals with finite energy, i.e. for
functions f ∈ L2(R) whose Fourier transform has support in
[−b, b]. The space of all such functions is the Paley-Wiener
space PW ([−b, b]).

Our purpose is to give similar reconstruction methods in
case of non-band-limited signals.
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Sampling and interpolation

The Whittaker-Kotelnikov-Shannon sampling theorem follows from
the properties of the Paley-Wiener space. The PW [−b, b] is a re-
producing kernel Hilbert space with reproducing kernel

k(t, u) =

{
sin b(t−u)
π(t−u) , t 6= u;

b/π, t = u.

The function k has zeros at t = mπ/b, u = nπ/b, and the localized
kernels √

π/bknπ/b(t) =
√
π/b

sin b(t − nπ/b)

b(t − nπ/b)

form an orthonormal basis for PW [−b, b]. The sampling theorem
for J = [−b, b] is equivalent to the orthonormal expansion

f (t) =
∞∑

n=−∞

π

b
〈f , knπ/b〉knπ/b(t) (t ∈ R).
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Sampling and interpolation

The steps of the proof of this theorem can’t be extended if instead
of J compact we consider J = (0,∞).
Remarks.

H2(C+) is isomorphic with F−1(L2(0,+∞))

Because of

f (z) =
1

2πi

∞∫
−∞

f (t)

t − z
dt =

∞∫
0

f̂ (ξ)e2πiξzdξ, (z ∈ C+)

we have the reproducing kernel K (z , t) = 1
2πi(t−z)

(t ∈ R, z ∈ C+).

This has no zeros, consequently there are no nodes (tn) for
which the localized K (tn, t) would form an orthogonal basis
for H2(C+).
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New rational interpolations: T. Eisner, B. Király, M. Pap,
Á. Pilgermájer

In the last years new rational interpolations has been investigated
and lead to new sampling and interpolation theorems.
Idea: we approximate the Cauchy kernel K by a sequence of re-
producing kernels KN . Using the localized KN -s on the zeros, we
construct orthogonal and discrete orthogonal bases for some ratio-
nal function spaces and in these spaces we give the analogue of the
sampling theorem.
The construction of these operators is based on the discrete or-
thogonality of the Malmquist-Takenaka systems. Combining
these interpolations one can give exact interpolation on the real line
for a large class of rational functions among them for the Runge test
function. The properties of the Lebesgue function of these rational
interpolation operators were studied.
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The Hardy space of the upper and lower half plane

Let C+ = {z ∈ C : Im(z) > 0}, C− = {z ∈ C : Im(z) < 0}. The
set of holomorphic functions are denoted by H(C+), H(C−) and the
corresponding Hardy spaces by

H2(C+) =

{
h ∈ H(C+) : sup

{∫
R
|h(x + iy)|2 dx : y > 0

}
<∞

}
.

H2(C−) =

{
h ∈ H(C−) : sup

{∫
R
|h(x + iy)|2 dx : y < 0

}
<∞

}
.

For each f ∈ H2(C+) there exists its non-tangential limit in L2(R).
The Fourier transform of the boundary limit of f ∈ H2(C+) has
support in [0,∞).
For each f ∈ H2(C−) there exists its non-tangential limit in L2(R).
The Fourier transform of the boundary limit of f ∈ H2(C−) has
support in (−∞, 0].
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Malmquist-Takenaka systems for upper half plane

Let {λi}∞i=1 an arbitrary sequence of complex numbers from the
upper half plane C+, and let the Malmquist-Takenaka system for
the upper half plane {Ψn}∞n=1 defined by

Ψ1(z) =

√
=λ1
π

z − λ1

, Ψn =

√
=λn
π

z − λn

n−1∏
k=1

z − λk
z − λk

, (n = 2, 3, . . .).

This is a system of rational functions associated with the set
of poles {λi}∞i=1 in the lower half-plane.
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Malmquist-Takenaka systems for upper half plane

The system of functions {Ψn}∞n=1 is orthonormal on the entire
axis −∞ < x < +∞ in the following sense

+∞∫
−∞

Ψn(x)Ψm(x)dx = δmn.

Moreover, if we have the following non-Blaschke condition for
the upper half plane

∞∑
k=1

=λk
1 + |λk |2

=∞

then {Ψn}∞n=1 is a complete orthonormal system for H2(C+).
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The kernel function to M-T system and its partial sums

The kernel function

K (z , ξ) =
∞∑
k=1

Ψk(z)Ψk(ξ) =
1

2iπ(ξ − z)

Blaschke like products: B̃N(z) =
∏N

k=1
z−λk
z−λk

ηk , where

N > 0, ηk =
|1+λ2

k |
1+λ2

k
, if λk 6= i , and ηk = 1 if λk = i

For arbitrary values of the variables z 6= ξ and for any N,
1 ≤ N <∞, the analogue of the Darboux-Christoffel formula
for the upper half plane

KN(z , ξ) =
N∑

k=1

Ψk(z)Ψk(ξ) =
1− B̃N(ξ)B̃N(z)

2iπ(ξ − z)
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Extended M-T system to the lower half plane

The extended system ΨΨΨN for negative indexes is given by:

B̃N(z) =
N∏

k=1

z − λk
(z − λk)ηk

,

ΨΨΨN = {Ψ−n = B̃NΨn, n = 1, 2, . . . ,N}.
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Discrete orthogonality

For ak = i−λk
i+λk

let us consider the equation

z − a1

1− a1z
· z − a2

1− a2z
· . . . · z − aN

1− aNz
= 1

has N different solutions and they can be written as zk := e iτk

Let denote by tk = tan τk
2 , where τk , k = 1, . . . ,N i.e. zk = e iτk =

i−tk
i+tk

, k = 1, . . . ,N. Let us introduce the following set of nodes on
the real line

RN = {tk : k = 1, . . . ,N}.
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Discrete orthogonality

Furthermore, from the definition of zk and tk , one can get

B̃N(t`)B̃N(tk) = B̃N(t`)B̃N(tk) = BN(zk)BN(z`) = 1. (1)

Suppose that every node is finite. Using the points of discretization
one can get the formula of the localized reproducing kernels

KN(t, tk) =


1−B̃N(t)
2πi(tk−t) t 6= tk ,
N∑

m=1

=λm
π|tk−λm|2

t = tk .
(2)

KN(t, tk) =


B̃N(t)−1

2πi(tk−t) t 6= tk ,
N∑

m=1

=λm
π|tk−λm|2

t = tk .
(3)
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The Hardy space of the upper and lower half plane
Discrete orthogonality

Rational interpolation with nodes on the real line

Discrete orthogonality

Let define the following weight function:

1

ρ̃N(t)
:= KN(t, t) =

N∑
k=1

=λk
π|t − λk |2

(t ∈ R),

and the following discrete scalar product:

〈F ,G 〉N =
∑
t∈RN

F (t)G (t)ρ̃N(t).
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Discrete orthogonality, Eisner-P, JFAA, 2014

Theorem

The finite collection of Ψn(1 ≤ n ≤ N) forms a discrete orthonormal
system with respect to the scalar product

〈F ,G 〉N =
∑
t∈RN

F (t)G (t)ρ̃N(t),

namely
〈Ψn,Ψm〉N = δmn (1 ≤ m, n ≤ N).

Similarly the finite collection of Ψn(n = −N,−N+1, . . . ,−1) forms
a discrete orthonormal system with respect to the scalar product
〈., .〉N , i.e.,

〈Ψn,Ψm〉N = δmn (−N ≤ m, n ≤ −1).
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Projection operators on special spaces of rational functions

Let denote by Pk the space of polynomials of degree at most k ,
η(z) =

∏N
n=1(z − λn), ω(z) =

∏N
n=1(z − λn) and set

RN :=

{
p

η
: p ∈ PN−1

}
RN :=

{ p

ω
: p ∈ PN−1

}
RN,N :=

{
p

ηω
: p ∈ P2N−1

}
It is clear that RN,N = RN ⊕RN , i.e., they are orthogonal comple-

ment in L2(R).
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Projection on RN and on RN

RN = span{Ψ`, ` = 1, . . . ,N}, RN = span{Ψ`, ` = −1, . . . ,−N}.

Let us consider the orthogonal projection operator of an arbitrary
function f ∈ H2(C+) on the subspace RN given by

PN f (z) =
N∑

k=1

〈f ,Ψk〉Ψk(z).

Analogously the orthogonal projection operator of an arbitrary func-
tion f ∈ H2(C−) on the subspace RN is

PN f (z) =
−1∑

k=−N
〈f ,Ψk〉Ψk(z).
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The pointwise convergence

Theorem

Let suppose that the non-Blaschke condition is satisfied for the pa-
rameters λn. Then for any f ∈ H2(C+) and any z ∈ C+ we have
PN f (z)→ f (z), and for any f ∈ H2(C−) and any z ∈ C− we have
PN f (z)→ f (z).

From the proof it follows that PN f → f uniformly on every compact
subset of the upper half plane and PN f → f uniformly on every
compact subsets of the lower half plane.
We are also interested in the behaviour of PN and PN on the real
line.
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Convergence on the real line

Theorem

If f ∈ H2(C+) has a partial fraction decomposition f (z) =∑m
`=1

c`
z−γ` , γ` ∈ C+, then |f (t) − PN f (t)| → 0 uniformly on

R and lim
N→0

maxt∈R(1 + t2)|f (t)− PN f (t)|2 → 0.

Analogously, if f ∈ H2(C−) has a partial fraction decomposition
f (z) =

∑m
`=1

c`
z−γ` , γ` ∈ C+, then |f (t)−PN f (t)| → 0 uniformly

on R and lim
N→0

maxt∈R(1 + t2)|f (t)− PN f (t)|2 → 0.
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Properties of the projection operators

Corollary

For every f ∈ RN the corresponding discrete and continuous
Malmquist-Takenaka coefficients are equal, i.e.

〈f ,Ψk〉 = 〈f ,Ψk〉N , (1 ≤ k ≤ N), (4)

and

PN f (z) = 〈f (.),KN(., z)〉 = 〈f (.),KN(., z)〉N = f (z) (z ∈ C+).

Similarly, for every f ∈ RN

〈f ,Ψk〉 = 〈f ,Ψk〉N , (−N ≤ k ≤ −1),

PN f (z) = 〈f (.),KN(., z)〉 = 〈f (.),KN(., z)〉N = f (z) (z ∈ C−).
(5)
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Rational interpolation with nodes on the real line

Let RN to be the set of nodes. Consider the following interpolation
operators:

LN f :=
∑
t∈RN

KN(., t)

KN(t, t)
f (t),

where f is in A(C+).
Analogously, for the lower half plane algebra of analytic functions
A(C−) consider the following interpolation operators:

LN f :=
∑
t∈RN

KN(., t)

KN(t, t)
f (t),

where f ∈ A(C−).
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Rational interpolation with nodes on the real line

Let us denote by

`N,t(ω) :=
KN(ω, t)

KN(t, t)
, `N,t(ω) :=

KN(ω, t)

KN(t, t)
, (t ∈ RN , ω ∈ R).

From the definition of RN , KN , KN and (1) it follows that for 1 ≤
k , ` ≤ N, one has:

`N,tk (t`) =
KN(t`, tk)

KN(tk , tk)
= δk`, `N,tk (t`) =

KN(t`, tk)

KN(tk , tk)
= δk`

i.e., {`N,t , t ∈ RN} are the Lagrange functions corresponding to the
system {Ψ`, ` = 1, . . . ,N}, and {`N,t , t ∈ RN} are the Lagrange
functions corresponding to the system {Ψ`, ` = −N, . . . ,−1}. This
implies that LN f and LN f interpolate f at the points of RN .
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Rational interpolation with nodes on the real line

Using the reproducing property of KN and KN it can be proved that
`N,t(ω), (t ∈ RN) form an orthogonal basis in RN and `N,t(ω), (t ∈
RN) form an orthogonal basis in RN .
The interpolation operators can be expressed also using the discrete
scalar product as:

LN f (z) = 〈f ,KN(., z)〉N (f ∈ A(C+), z ∈ C+),

LN f (z) = 〈f ,KN(., z)〉N (f ∈ A(C−), z ∈ C−).

From (4) and (5) it follows that these operators are exact on RN

and RN respectively, i.e.,

LN f = PN f = f , f ∈ RN , LN f = PN f = f , f ∈ RN .
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Properties of the interpolation operators

As a consequence of the previous property we can propose a new ex-
act interpolation scheme for those functions which belong to RN,N .
Let f ∈ RN,N , then f = f1 + f2, where f1 ∈ RN and f2 ∈ RN and
let define LN f = LN f1 + LN f2. Then for every f ∈ RN,N

LN f = LN f1 + LN f2 = f1 + f2 = f .

If we choose λ1 = i , then the Runge’s test function belongs to
RN,N . Indeed

f (z) =
1

z2 + 1
=

1

2i(z − i)
− 1

2i(z + i)
.

Taking f1 = −1
2i(z+i) ∈ RN and f2 = 1

2i(z−i) ∈ RN we obtain the
following exact interpolation for the Runge’s function:

LN f = LN f1 + LN f2 = f1 + f2 = f .

Margit Pap, Ákos Pilgermájer 6th Workshop on Fourier Analysis, Pécs, Hungary
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Convergence Properties of LN f

Theorem

Let λ1 = i , λk ∈ C+ such that

∞∑
k=1

=λk
1 + |λk |2

=∞.

If f ∈ A(C+) is uniformly continuous on C+ such that

lim
N→∞

max
t∈R

(1 + t2)|f (t)− PN f (t)|2 = 0,

then the interpolation operator LN f :=
∑

t∈RN

KN(.,t)
KN(t,t) f (t) con-

verges to f in norm, i.e., lim
N→∞

‖f − LN f ‖2 = 0.

Very similar result holds for the lower half plane.
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The Lebesque function of the interpolation operator

The Lebesgue function associated to the interpolation problem is

ΛN(t) =
∑

tk∈RN

|`N,tk (t)| =
∑

tk∈RN

∣∣∣∣ KN(t, tk)

KN(tk , tk)

∣∣∣∣ .
The Lebesgue constant is the maximum value of the Lebesgue func-
tion ΓN = maxt∈R ΛN(t). Figures

At first we get for the associated Lagrange functions `N,tk (t) of our
rational interpolation, or equivalently the corresponding localized
reproducing kernels

Theorem

For every tk ∈ RN the function `N,tk (t) = KN(t,tk )
KN(tk ,tk ) are continuous

on R and they tend to 0 if |t| → ∞.
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The Lebesque function of the interpolation operator

We obtained theoretical bounds for ΓN
∞, and we made numerical

experiments.

ΛN(t`) =
∑

tk∈RN

∣∣∣∣KN(t`, tk)

KN(tk , tk)

∣∣∣∣ = 1, t` ∈ RN .

Secondly, ΛN(t) is continuous on R and has limit 0 if |t| → ∞.
Moreover, for every ε > 0 there exists δ` > 0 such that, if t ∈
(t` − δ`, t` + δ`) we have |Λ(t) − 1| < ε, which implies that in a
neighbourhood of every t` ∈ RN the function ΛN is bounded by
1 + ε.
If t ∈ [−P,P]\[∪N`=1(t`−δ`, t`+δ`)], then 1

|t−tk | < max`=1,...,N
1
δ`

=:
MN , and

ΛN(t) ≤ MN

π

N∑
k=1

1

KN(tk , tk)
≤ MN(1 + P2).
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Thank you for your attention!

Dezső Biczó c©
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Figures of the Lebesgue function (N = 81) and its terms
(N = 81, tk = 1, 40, 81) Go Back
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