
Approximation by Poisson polynomials in

Smirnov classes with variable exponent

A. Testici1 and D. M. Israfilov1

1Department of Mathematics
Balikesir University

Sixth Workshop on Fourier Analysis and Related Fields
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Introduction

The variable exponent Lebesgue spaces Lp(x) are a generalization of
the classical Lebesgue spaces Lp, when the constant exponent p replace by
a exponent function p(·). Lebesgue spaces with variable exponent provide
us further advantages.
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Introduction

For example if we consider on R the function f (x) = |x |−1/3 then
f (x) /∈ Lp (R) where p is a positive constant.

Infact the constant is
replaced by the exponent function

p (x) =
9

2
− 5/2

2 |x |+ 1

at this time we have ∫
R

|f (x)|p(x) dx <∞.

More detail can be found in monograph [Cruz-Uribe, Fiorenza 2013].
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Introduction

Lebesgue spaces with variable exponent are preferred in order to make
investigation in most mechanical and pyhsical instances.

Their fields of
applications contain elasticity, fluid dynamic for the modelling of
electrorheological fluids.

This close ties related with mechanics and physics make Lebesgue
spaces with variable exponent important in time. Accordingly investigating
some properties of these function space gains acceleration.
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Introduction

The fundamental problems of the approximation theory in the variable
exponent Lebesgue spaces of periodic and non periodic functions defined
on the intervals of real line were studied and solved by different authors.
The detailed information about these spaces can be found in the
monographs : [Sharapudinov 2012] and [Cruz-Uribe, Fiorenza 2013].
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Introduction

In this talk we are going to mention that approximation properties of
Poisson polynomials in addition to this direct and inverse theorems of
approximation theory in Smirnov classes with variable exponent.
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Smirnov Classes With Variable Exponent

Let G ⊂ C be a finite domain in the complex plane, bounded by a
rectifiable Jordan curve Γ and let G−:= Ext Γ.

Let also T:= {w ∈ C : |w | = 1}, D := Int T and D−:= Ext T.
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Smirnov Classes With Variable Exponent

The variable exponent Lebesgue spaces Lp(·)(Γ) for a given Lebesgue
measurable variable exponent p(z) ≥ 1 on Γ we define as the set of
Lebesgue measurable functions f , such that∫

Γ
|f (z)|p(z) |dz | <∞.

 Lp(·)(Γ) is a Banach space equipped with the norm

‖f ‖Lp(·)(Γ) := inf

λ > 0 :

∫
Γ

|f (z)/λ|p(z) |dz | ≤ 1

 <∞.

If p(·) = p it is the classical Lebesgue space Lp (Γ).

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 8 / 33
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Smirnov Classes With Variable Exponent

In the case of Γ := T we obtain the space Lp(·)(T) with the norm

‖f ‖Lp(·)(T) := inf

λ > 0 :

2π∫
0

∣∣f (e it)/λ
∣∣p(e it) |dt| ≤ 1

 =: ‖f ‖Lp(·)([0,2π]) .
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Smirnov Classes With Variable Exponent

Let f be an analytic function in region G . If there exists a sequence of
rectifiable Jordan curves (γn) in G , tending to the boundary Γ such that∫

γn

|f (z)|p |dz | ≤ M <∞, 1 ≤ p <∞,

then we say that f belongs to the Smirnov class Ep (G ).

Each function f ∈ Ep (G ) has [Goluzin 1969, pp. 419-438] the
non-tangential boundary values almost everywhere (a.e) on Γ and the
boundary function belongs to Lp(Γ).
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Smirnov Classes With Variable Exponent

Let f be an analytic function in region G . If there exists a sequence of
rectifiable Jordan curves (γn) in G , tending to the boundary Γ such that∫

γn

|f (z)|p |dz | ≤ M <∞, 1 ≤ p <∞,

then we say that f belongs to the Smirnov class Ep (G ).

Each function f ∈ Ep (G ) has [Goluzin 1969, pp. 419-438] the
non-tangential boundary values almost everywhere (a.e) on Γ and the
boundary function belongs to Lp(Γ).

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 10 / 33



Smirnov Classes With Variable Exponent

The sets

Ep(·)(G ) :=
{
f ∈ E 1(G ) : f ∈ Lp(·)(Γ)

}
,

is called the variable exponent Smirnov classes of analytic functions in
G . By equipping with the norm

‖f ‖Ep(·)(G) := ‖f ‖Lp(·)(Γ) ,

Ep(·)(G ) becomes the Banach spaces.
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P (·) Condition

Let E be the segment [0, 2π] or a Jordan rectifiable curve Γ and let
p (·) : E → R+ := [0,∞) be a Lebesgue measurable function defined on E
such that

1 ≤ p− := ess inf
z∈E

p(z) ≤ ess sup
z∈E

p(z) =: p+ <∞. (1)

Definition 1 We say that p (·) ∈ P(E), if p (·) satisfies the conditions (1)
and the inequality

|p(z1)− p(z2)| ln
(

|E|
|z1 − z2|

)
≤ c , ∀z1, z2 ∈ E ,

with a positive constant c(p), where |E| is the Lebesgue measure of E . If
p (·) ∈ P(E) and p− > 1, then we say that p (·) ∈ P0(E).
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Dini Smooth Curve

Let g be a continious funciton on [0, 2π]. Modulus of continuity of g
is defined by

ω (g , t) := sup
|t1−t2|≤δ

{|g (t1)− g (t2)| : t1, t2 ∈ [0, 2π]} , δ > 0.

Definition 2 If the curve Γ has a parametrization

Γ : g (t) , 0 ≤ t ≤ 2π

such that g ′ (t) 6= 0 and g ′ (t) is Dini-continious, that is

2π∫
0

ω (g ′, t)

t
dt <∞,

then Γ is called Dini smooth curve [Pommerenke 1992, p. 48].

The set of Dini smooth curves is denoted by D in this talk.
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Conformal Maps

By ϕ we denote the conformal mapping of G− onto U−, normalized
by the conditions:

ϕ (∞) =∞, lim
z→∞

ϕ (z)

z
> 0.

Let ψ abe the inverse mapping of ϕ. The ϕ and ψ have continuous
extensions to Γ and T,respectively.Their derivatives ϕ

′
and ψ′ have definite

nontangential boundary values a.e. on Γ and T, and the boundary
functions are integrable with respect to Lebesgue measure on Γ and T,
respectively [Goluzin 1969, p. 419-438].

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 14 / 33
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Conformal Maps

If Γ ∈ D, then by [Warschawski 1932] there are the positive constants
ci > 0, i = 1, 2, 3, 4 such that

0 < c1 ≤
∣∣∣ψ′ (w)

∣∣∣ ≤ c2 <∞, 0 < c3 ≤
∣∣∣ϕ′ (z)

∣∣∣ ≤ c4 <∞, (2)

a.e. on T and on Γ, respectively. Hence if Γ ∈ D, then for the functions
f0 := f ◦ ψ, p0 := p ◦ ψ by using (2) it can showed that the following
relations hold :

f ∈ Lp(·)(Γ)⇔ f0 ∈ Lp0(·)(T) and p0 ∈ P(T)⇔ p ∈ P(Γ).
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Cauchy Singular Operator on Γ

Let

SΓ (f ) (z) := lim
ε→0

1

2πi

∫
Γ\{t∈Γ:|t−z|<ε}

f (ζ)

ζ − z
dζ

be the Cauchy singular operator in Lp(·) (Γ).

By Privalov’s lemma the
Cauchy type integrals

f + (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ, z ∈ G

f − (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ, z ∈ G−

have the nontangential inside and outside limits a.e. on Γ respectively.
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Boundedness Cauchy Singular Operator

The following theorem is a special case of the more general result on
the boundedness of Cauchy’s singular operator SΓ (f ) in Lp(·) (Γ) , proved
in [Kokilashvili, Samko 2009].

Theorem A

Let Γ ∈ D and p ∈ P0 (Γ). If f ∈ Lp(·) (Γ) then Cauchy singular operator
SΓ (f ) is bounded operator in Lp(·) (Γ).
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Boundedness Cauchy Singular Operator

The following theorem is a special case of the more general result on
the boundedness of Cauchy’s singular operator SΓ (f ) in Lp(·) (Γ) , proved
in [Kokilashvili, Samko 2009].

Theorem A

Let Γ ∈ D and p ∈ P0 (Γ). If f ∈ Lp(·) (Γ) then Cauchy singular operator
SΓ (f ) is bounded operator in Lp(·) (Γ).

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 17 / 33



Cauchy Type Integral

For a given function f ∈ Lp(·) (Γ) we define the Cauchy type integral

f +
0 (w) :=

1

2πi

∫
T

f0 (τ)

τ − w
dτ , w ∈ D

which is analytic in D.

Lemma 1 [Israfilov, Testici 2015]

If f ∈ Lp(·) (Γ) , Γ ∈ D, and p ∈ P0 (Γ) then f + ∈ Ep(·) (G ) and
f − ∈ Ep(·) (G−) .

Therefore we obtain that if f ∈ Ep(·) (G ), Γ ∈ D, and p ∈ P0 (Γ) then
f +
0 ∈ Ep0(·) (D) and f −0 ∈ Ep0(·) (D−).
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Modulus of smoothness

Definition 3 For f ∈ Lp(·)(T), p (·) ∈ P(T), and t > 0

we set

∆r
t f (w) : =

r∑
s=0

(−1)r+s

(
r

s

)
f
(
we ist

)
; w ∈ T, r = 1, 2, 3, ...

and define the r th modulus of smoothness by

Ωr (f , δ)T,p(·) : = sup
0<|h|≤δ

∥∥∥∥∥∥1

h

h∫
0

∆r
t f (w) dt

∥∥∥∥∥∥
Lp(·)(T)

.

We define the modulus of smoothness for f ∈ Ep(·)(G ) as following:

Ωr (f , δ)G ,p(·) : = Ωr

(
f +
0 , δ

)
T,p0(·) .
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Modulus of smoothness

Definition 3 For f ∈ Lp(·)(T), p (·) ∈ P(T), and t > 0 we set

∆r
t f (w) : =

r∑
s=0

(−1)r+s

(
r

s

)
f
(
we ist

)
; w ∈ T, r = 1, 2, 3, ...

and define the r th modulus of smoothness by

Ωr (f , δ)T,p(·) : = sup
0<|h|≤δ

∥∥∥∥∥∥1

h

h∫
0

∆r
t f (w) dt

∥∥∥∥∥∥
Lp(·)(T)

.

We define the modulus of smoothness for f ∈ Ep(·)(G ) as following:

Ωr (f , δ)G ,p(·) : = Ωr

(
f +
0 , δ

)
T,p0(·) .

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 19 / 33
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Faber Polynomials

Fk (z) , k = 1, 2, ... Faber polynomails for continuum G are Laurent
coefficients in the following series expansion:

ψ′ (w)

ψ (w)− z
=
∞∑
k=0

Fk (z)

wk+1
, z ∈ G and w ∈ D−.

If f ∈ Ep(·) (G ) then

f (z) ∼
∞∑
k=0

akFk (z)

where z ∈ G and

ak = ak (f ) : =
1

2πi

∫
T

f0 (w)

wk+1
dw .
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Faber Series

The

f (z) ∼
∞∑
k=0

akFk (z) , z ∈ G

series

is called the Faber series of f in domain G , the coefficient ak
are said to be Faber coefficients of f in Ep(·)(G ).

Remark

Let Γ ∈ D, and p ∈ P0 (Γ). By taking into account f +
0 ∈ Ep0(·) (D)

and f −0 ∈ Ep0(·) (D−) we can conclude that Faber coefficient of function f
are Taylor coefficients of the functions f −0 .
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T (f ) Operator

Let Π be the set of all algebraic polynomials (with no restriction on
the degree) and let Π (D) be set of traces of members of Π on D. If we
define the operator T : Π (D) ⊂ Ep0(·) (D)→ Ep(·) (G ) :

T (f ) (z) =
1

2πi

∫
T

f (w)ψ′ (w)

ψ (w)− z
dw , z ∈ G and f ∈ Ep0(·) (D) .

Theorem B [Israfilov, Testici 2015]

Let Γ ∈ D and p(·) ∈ P0(Γ). Then,the operator

T : Ep0(·) (D)→ Ep(·) (G )

is linear, bounded, one-to-one and onto. Moreover,

T
(
f +
0

)
= f forevery f ∈ Ep(·) (G ) .
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Best Approximation Number

Let Π∗n be the class of algebraic polynomials of degree not exceeding
n. The best approximation number of f ∈ Lp(·) (Γ) is defined by

En (f )G ,p(·) := inf
{
‖f − Pn‖Lp(·)(Γ) : Pn ∈ Π∗n

}
n = 0, 1, 2, ..

For f ∈ Lp(·) (T) we define the best approximation number

En (f )p(·) := inf
{
‖f − Tn‖p(·) : Tn ∈ Πn

}
n = 0, 1, 2, ..

in the class Πn of the trigonometric polynomials of degree not exceeding n.

Lemma 2 [Israfilov, Testici 2015]

Let Γ ∈ D and p(·) ∈ P0(Γ). If f ∈ Ep(·) (G ) then there exist the positive
constants such that

En

(
f +
0

)
p0(·) ≤ c5(p)En (f )G ,p(·) ≤ c6(p)En

(
f +
0

)
p0(·) .
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Poisson Polynomials

Let f ∈ Ep(·) (G ). Let Fk (z) be Faber polynomials for G and
ak , k = 0, 1, 2, ... be Faber coefficents of f .

Poisson polynomials are
defined for f as

Vn (f , z) :=
n∑

k=0

akFk (z) +
2n−1∑
k=n+1

(
2− k

n

)
akFk (z) , z ∈ G .
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Main Results

The following direct and inverse theorems of approximation theory in
Lebesgue space with variable exponent is proved in [Israfilov,Testici 2017].

Theorem 1 [Israfilov,Testici 2017]

If f ∈ Lp(·) (T), p (·) ∈ P (T), then there exists a constant c (p) > 0 such
that for every n = 1, 2, ...

En (f )p(·) ≤ c(p) Ωr (f , 1/n)T,p(·) .
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Main Results

Theorem 2 [Israfilov,Testici 2017]

Let p (·) ∈ P (T).Then there exists a positive constant c (p, r) such that
for every f ∈ Lp(·) (T) and n = 0, 1, 2, ...

the inequality

Ωr (f , 1/n)T,p(·) ≤
c(p, r)

nr

n∑
k=0

(k + 1)r−1 Ek (f )p(·)

holds.

Theorem 2 in the case of r = 1 was proved in [Israfilov, Testici 2015].
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Main Results

Theorem 3

Let Γ ∈ D. If f ∈ Ep(·) (G ) with p(·) ∈ P0(Γ) then

‖f − Vn (f , z)‖Lp(·)(Γ) ≤ c (p)En (f )G ,p(·) , n = 1, 2, 3, ...

is holds, with a positive constant c (p) independent of n.
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Main Results

By Theorem 1, Theorem B and Lemma 2 we obtain :

Theorem 4

Let Γ ∈ D. If f ∈ Ep(·) (G ), p(·) ∈ P0(Γ), then

there is a positive
constant c (p, r) such that the inequality

En (f )G ,p(·) ≤ c (p, r) Ωr (f , 1/n)G ,p(·) , n = 1, 2, 3, ...

holds.
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constant c (p, r) such that the inequality

En (f )G ,p(·) ≤ c (p, r) Ωr (f , 1/n)G ,p(·) , n = 1, 2, 3, ...
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Main Results

By Theorem 2, Theorem B and Lemma 2 we obtain :

Theorem 5

Let Γ ∈ D. If f ∈ Ep(·) (G ), p(·) ∈ P0(Γ), then

there is a positive
constant c (p, r) such that the inequality

Ωr (f , 1/n)G ,p(·) ≤
c (p, r)

nr

n∑
k=0

(k + 1)r−1 Ek (f )G ,p(·) , n = 1, 2, 3, ...

holds.
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Main Results

By Theorem 3 and Theorem 4 we obtain :

Corollary 1

Let Γ ∈ D. If f ∈ Ep(·) (G ) with p(·) ∈ P0(Γ) then

‖f − Vn (f , z)‖Lp(·)(Γ) ≤ c (p) Ωr (f , 1/n)G ,p(·) , n = 1, 2, 3, ...

is holds, with a positive constant c (p) independent of n.
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Main Results

By Theorem 3 and Theorem 4 we obtain :

Corollary 1

Let Γ ∈ D. If f ∈ Ep(·) (G ) with p(·) ∈ P0(Γ) then

‖f − Vn (f , z)‖Lp(·)(Γ) ≤ c (p) Ωr (f , 1/n)G ,p(·) , n = 1, 2, 3, ...

is holds, with a positive constant c (p) independent of n.

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 30 / 33
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Warschawski S. :Über das Randverhalten der Ableitung der
Abbildungsfunktionen bei konformer Abbildung, Math. Z., 35, (1932),
pp. 321-456.

Sharapudinov I. I. : Some questions of approximation theory in the
Lebesgue spaces with variable exponent : Viladikavkaz, 2012.

Cruz-Uribe D. V. and Fiorenza A. : Variable Lebesgue Spaces
Foundation and Harmonic Analysis. Birkhäsuser, (2013).

Testici, Israfilov Approximation In Variable Smirnov Spaces 24-31 August 2017,Pécs 32 / 33
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