Spectral synthesis holds on the reals. In other words: given any continuous complex valued function f on the reals it is the uniform limit on compact sets of linear combinations of exponential monomials of the form $x \mapsto x^n e^{\lambda x}$ (n is a natural number, λ is a complex number) such that all these exponential monomials belong to the smallest linear space including all translates of f and being closed with respect to uniform convergence on compact sets.
Spectral synthesis holds on the reals. In other words: given any continuous complex valued function \(f \) on the reals it is the uniform limit on compact sets of linear combinations of exponential monomials of the form \(x \mapsto x^n e^{\lambda x} \) (\(n \) is a natural number, \(\lambda \) is a complex number) such that all these exponential monomials belong to the smallest linear space including all translates of \(f \) and being closed with respect to uniform convergence on compact sets.
Spectral synthesis holds on the reals. In other words: given any continuous complex valued function \(f \) on the reals it is the uniform limit on compact sets of linear combinations of exponential monomials of the form \(x \mapsto x^n e^{\lambda x} \) (\(n \) is a natural number, \(\lambda \) is a complex number) such that all these exponential monomials belong to the smallest linear space including all translates of \(f \) and being closed with respect to uniform convergence on compact sets.

Laurent Schwartz, 1947

Laurent Schwartz

With his butterflies
No direct extension of Schwartz’s result to \mathbb{R}^n is possible:

Spectral synthesis fails to hold in \mathbb{R}^n for $n \geq 2$

(Dmitrii I. Gurevich, 1975) For each natural number $n \geq 2$ there exist compactly supported measures μ, ν such that the exponential monomial solutions of the system of functional equations

$$\mu * f = 0, \quad \nu * f = 0$$

do not span a dense subspace in the solution space of this system.
Counterexamples

No direct extension of Schwartz’s result to \mathbb{R}^n is possible:

Spectral synthesis fails to hold in \mathbb{R}^n for $n \geq 2$

(Dmitrii I. Gurevich, 1975) For each natural number $n \geq 2$ there exist compactly supported measures μ, ν such that the exponential monomial solutions of the system of functional equations

$$\mu \ast f = 0, \quad \nu \ast f = 0$$

do not span a dense subspace in the solution space of this system.

Spectral analysis fails to hold in \mathbb{R}^n for $n \geq 2$

(Dmitrii I. Gurevich, 1975) For each natural number $n \geq 2$ there exist compactly supported measures $\mu_1, \mu_2, \ldots, \mu_6$ such that the system

$$\mu_k \ast f = 0, \quad k = 1, 2, \ldots, 6$$

has no exponential monomial solution.
No direct extension of Schwartz’s result to \mathbb{R}^n is possible:

Spectral synthesis fails to hold in \mathbb{R}^n for $n \geq 2$

(Dmitrii I. Gurevich, 1975) For each natural number $n \geq 2$ there exist compactly supported measures μ, ν such that the exponential monomial solutions of the system of functional equations

$$
\mu * f = 0, \quad \nu * f = 0
$$

do not span a dense subspace in the solution space of this system.

Spectral analysis fails to hold in \mathbb{R}^n for $n \geq 2$

(Dmitrii I. Gurevich, 1975) For each natural number $n \geq 2$ there exist compactly supported measures $\mu_1, \mu_2, \ldots, \mu_6$ such that the system

$$
\mu_k * f = 0, \quad k = 1, 2, \ldots, 6
$$

has no exponential monomial solution.
G: locally compact Abelian group, $C(G)$: locally convex topological vector space of all continuous complex valued functions on G.
Notation and terminology

G: locally compact Abelian group, $C(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra
G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \cong the dual of $\mathcal{C}(G)
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \cong the dual of $\mathcal{C}(G) \cong$ linear space of all compactly supported measures G:
Notation and terminology

\(G\): locally compact Abelian group, \(\mathcal{C}(G)\): locally convex topological vector space of all continuous complex valued functions on \(G\), topology: compact convergence

\(\mathcal{M}_c(G)\): measure algebra \(\cong\) the dual of \(\mathcal{C}(G)\) \(\cong\) linear space of all compactly supported measures

\(\mathcal{G}\): commutative algebra with identity

Convolution:

\[\mu \ast \nu(f)(x) = \int_G \mu(\tau_y f)(x) \, d\nu(y),\]

where \(\tau_y f(x) = f(x - y)\).
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $\mathcal{C}(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \cong the dual of $\mathcal{C}(G) \cong$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module:
\(G \): locally compact Abelian group, \(C(G) \): locally convex topological vector space of all continuous complex valued functions on \(G \), topology: compact convergence

\(M_c(G) \): measure algebra \(\approx \) the dual of \(C(G) \) \(\approx \) linear space of all compactly supported measures \(G \): commutative algebra with identity

Convolution:

\[
\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)
\]

Vector module: \(C(G) \) over \(M_c(G) \)
Notation and terminology

G: locally compact Abelian group, $C(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$M_c(G)$: measure algebra \approx the dual of $C(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $C(G)$ over $M_c(G)$

Dirac–measure:

δ_y \ast f = \int f(y) \, d\delta_y
G: locally compact Abelian group, $C(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $C(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu * \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu * f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $C(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$,
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $\mathcal{C}(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $\mathcal{C}(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$, δ_0 is the identity in $\mathcal{M}_c(G)$
Notation and terminology

G: locally compact Abelian group, **C**(**G**): locally convex topological vector space of all continuous complex valued functions on **G**, topology: compact convergence

M_c_(**G**): measure algebra ≈ the dual of **C**(**G**) ≈ linear space of all compactly supported measures **G**: commutative algebra with identity

Convolution:

\[
\mu \ast \nu(f) = \int \int f(x + y) \ d\mu \ d\nu, \quad \mu \ast f(x) = \int f(x - y) \ d\mu(y)
\]

Vector module: **C**(**G**) over **M**_c_(**G**)

Dirac–measure: \(\delta_y(f) = f(y)\), \(\delta_0\) is the identity in **M**_c_(**G**)

Convolution operator:
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \cong the dual of $\mathcal{C}(G)$ \cong linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $\mathcal{C}(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$, δ_0 is the identity in $\mathcal{M}_c(G)$

Convolution operator: $f \mapsto \mu \ast f$
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $\mathcal{C}(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu * \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu * f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $\mathcal{C}(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$, δ_0 is the identity in $\mathcal{M}_c(G)$

Convolution operator: $f \mapsto \mu * f$

Translation:
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $\mathcal{C}(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $\mathcal{C}(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$, δ_0 is the identity in $\mathcal{M}_c(G)$

Convolution operator: $f \mapsto \mu \ast f$

Translation: $\tau_y f = \delta_{-y} \ast f$
Notation and terminology

\(G \): locally compact Abelian group, \(\mathcal{C}(G) \): locally convex topological vector space of all continuous complex valued functions on \(G \), topology: compact convergence

\(\mathcal{M}_c(G) \): measure algebra \(\approx \) the dual of \(\mathcal{C}(G) \) \(\approx \) linear space of all compactly supported measures

\(\mathcal{G} \): commutative algebra with identity

Convolution:

\[
\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)
\]

Vector module: \(\mathcal{C}(G) \) over \(\mathcal{M}_c(G) \)

Dirac–measure: \(\delta_y(f) = f(y) \), \(\delta_0 \) is the identity in \(\mathcal{M}_c(G) \)

Convolution operator: \(f \mapsto \mu \ast f \)

Translation: \(\tau_y f = \delta_{-y} \ast f \)

Variety, generated variety:
Notation and terminology

\(G \): locally compact Abelian group, \(\mathcal{C}(G) \): locally convex topological vector space of all continuous complex valued functions on \(G \), topology: compact convergence

\(\mathcal{M}_c(G) \): measure algebra \(\approx \) the dual of \(\mathcal{C}(G) \approx \) linear space of all compactly supported measures \(G \): commutative algebra with identity

Convolution:

\[
\mu * \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu * f(x) = \int f(x - y) \, d\mu(y)
\]

Vector module: \(\mathcal{C}(G) \) over \(\mathcal{M}_c(G) \)

Dirac–measure: \(\delta_y(f) = f(y) \), \(\delta_0 \) is the identity in \(\mathcal{M}_c(G) \)

Convolution operator: \(f \mapsto \mu * f \)

Translation: \(\tau_y f = \delta_{-y} * f \)

Variety, generated variety: closed submodules are exactly the varieties; \(\tau(f) \)
Notation and terminology

G: locally compact Abelian group, $\mathcal{C}(G)$: locally convex topological vector space of all continuous complex valued functions on G, topology: compact convergence

$\mathcal{M}_c(G)$: measure algebra \approx the dual of $\mathcal{C}(G) \approx$ linear space of all compactly supported measures G: commutative algebra with identity

Convolution:

$$\mu \ast \nu(f) = \int \int f(x + y) \, d\mu \, d\nu, \quad \mu \ast f(x) = \int f(x - y) \, d\mu(y)$$

Vector module: $\mathcal{C}(G)$ over $\mathcal{M}_c(G)$

Dirac–measure: $\delta_y(f) = f(y)$, δ_0 is the identity in $\mathcal{M}_c(G)$

Convolution operator: $f \mapsto \mu \ast f$

Translation: $\tau_y f = \delta_{-y} \ast f$

Variety, generated variety: closed submodules are exactly the varieties; $\tau(f)$
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety
Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv\) every nonzero subvariety has a one dimensional subvariety
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv\) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace
Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\iff\) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv\) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety
Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety ≡ every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv \) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety

Spectral analysis:
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv \) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety

Spectral analysis: there are nonzero finite dimensional subvarieties
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \(\equiv \) every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety

Spectral analysis: there are nonzero finite dimensional subvarieties

Spectral synthesis:
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety ≡ every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety

Spectral analysis: there are nonzero finite dimensional subvarieties

Spectral synthesis: there are sufficiently many finite dimensional subvarieties
Spectral analysis and synthesis

Spectral analysis for a variety: every nonzero subvariety has a nonzero finite dimensional subvariety \equiv every nonzero subvariety has a one dimensional subvariety

Synthesizable variety: all nonzero finite dimensional subvarieties span a dense subspace

Spectral synthesis for a variety: each subvariety is synthesizable

Spectral analysis on a group: spectral analysis holds for each variety

Spectral synthesis on a group: spectral synthesis holds for each variety

Spectral analysis: there are nonzero finite dimensional subvarieties

Spectral synthesis: there are sufficiently many finite dimensional subvarieties
Basic function classes

Exponential:

Let G be a locally compact Abelian group and $f: G \rightarrow \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
2. $\tau_p f$ is one dimensional and $f(0) = 1$.
3. f is a normalized common eigenfunction of all translation operators.
4. f is a normalized common eigenfunction of all convolution operators.

László Székelyhidi
Spectral Synthesis on Affine Groups
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \to \mathbb{C}$ a continuous function. Then the following conditions are equivalent.
Basic function classes

Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \to \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \rightarrow \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
2. $\tau(f)$ is one dimensional and $f(0) = 1$.
Basic function classes

Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \rightarrow \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
2. $\tau(f)$ is one dimensional and $f(0) = 1$.
3. f is a normalized common eigenfunction of all translation operators.
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \to \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
2. $\tau(f)$ is one dimensional and $f(0) = 1$.
3. f is a normalized common eigenfunction of all translation operators.
4. f is a normalized common eigenfunction of all convolution operators.
Exponential: continuous homomorphism of G into the multiplicative group of nonzero complex numbers:

$$m(x + y) = m(x)m(y), \quad m(0) = 1$$

Theorem

Let G be a locally compact Abelian group and $f : G \rightarrow \mathbb{C}$ a continuous function. Then the following conditions are equivalent.

1. f is an exponential.
2. $\tau(f)$ is one dimensional and $f(0) = 1$.
3. f is a normalized common eigenfunction of all translation operators.
4. f is a normalized common eigenfunction of all convolution operators.
Basic function classes

Exponential monomial: We let for each exponential m:

$$\Delta_{m;y} = \delta_{-y} - m(y)\delta_0,$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m;y_k}.$$
Basic function classes

Exponential monomial: We let for each exponential m:

$$\Delta_{m;y} = \delta_{-y} - m(y) \delta_0,$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m;y_k}.$$

The continuous function $f : G \to \mathbb{C}$ is called an *exponential monomial* if $\tau(f)$ is finite dimensional and there exists an exponential m and a natural number n such that

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} * f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in G.
Exponential monomial: We let for each exponential m:

$$\Delta_{m;y} = \delta_{y} - m(y)\delta_{0},$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m;y_1,y_2,...,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m;y_k}.$$

The continuous function $f : G \to \mathbb{C}$ is called an *exponential monomial* if $\tau(f)$ is finite dimensional and there exists an exponential m and a natural number n such that

$$\Delta_{m;y_1,y_2,...,y_{n+1}} * f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in G. If $f \neq 0$ then m is unique and we say that f corresponds to m and the smallest n with the above property is called the *degree* of f.
Basic function classes

Exponential monomial: We let for each exponential \(m \):

\[
\Delta_{m:y} = \delta_{-y} - m(y)\delta_0,
\]

the *modified difference* corresponding to \(m \) with increment \(y \). Higher order differences:

\[
\Delta_{m:y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m:y_k}.
\]

The continuous function \(f : G \to \mathbb{C} \) is called an *exponential monomial* if \(\tau(f) \) is finite dimensional and there exists an exponential \(m \) and a natural number \(n \) such that

\[
\Delta_{m:y_1,y_2,\ldots,y_{n+1}} \ast f = 0
\]

holds for each \(y_1, y_2, \ldots, y_{n+1} \) in \(G \). If \(f \neq 0 \) then \(m \) is unique and we say that \(f \) corresponds to \(m \) and the smallest \(n \) with the above property is called the *degree* of \(f \).

Exponential polynomial:

linear combination of exponential monomials

Theorem

Let \(G \) be an Abelian group. A variety on \(C_G \) is finite dimensional if and only if it is spanned by exponential monomials.
Basic function classes

Exponential monomial: We let for each exponential m:

$$\Delta_{m;y} = \delta_{-y} - m(y)\delta_0,$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m;y_k}.$$

The continuous function $f : G \to \mathbb{C}$ is called an *exponential monomial* if $\tau(f)$ is finite dimensional and there exists an exponential m and a natural number n such that

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} \ast f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in G. If $f \neq 0$ then m is unique and we say that f corresponds to m and the smallest n with the above property is called the *degree* of f.

Exponential polynomial: linear combination of exponential monomials
Basic function classes

Exponential monomial: We let for each exponential m:

$$\Delta_{m;y} = \delta_{-y} - m(y)\delta_0,$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m;y_k}.$$

The continuous function $f : G \to \mathbb{C}$ is called an *exponential monomial* if $\tau(f)$ is finite dimensional and there exists an exponential m and a natural number n such that

$$\Delta_{m;y_1,y_2,\ldots,y_{n+1}} \ast f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in G. If $f \neq 0$ then m is unique and we say that f corresponds to m and the smallest n with the above property is called the *degree* of f.

Exponential polynomial: linear combination of exponential monomials

Theorem

Let G be an Abelian group. A variety on $\mathbb{C}G$ is finite dimensional if and only if it is spanned by exponential monomials.
Basic function classes

Exponential monomial: We let for each exponential m:

$$\Delta_{m:y} = \delta_{-y} - m(y)\delta_0,$$

the *modified difference* corresponding to m with increment y. Higher order differences:

$$\Delta_{m:y_1,y_2,\ldots,y_{n+1}} = \prod_{k=1}^{n+1} \Delta_{m:y_k}.$$

The continuous function $f : G \to \mathbb{C}$ is called an *exponential monomial* if $\tau(f)$ is finite dimensional and there exists an exponential m and a natural number n such that

$$\Delta_{m:y_1,y_2,\ldots,y_{n+1}} * f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in G. If $f \neq 0$ then m is unique and we say that f corresponds to m and the smallest n with the above property is called the *degree* of f.

Exponential polynomial: linear combination of exponential monomials

Theorem

Let G be an Abelian group. A variety on $\mathbb{C}G$ is finite dimensional if and only if it is spanned by exponential monomials.
Invariant functions and measures

G: locally compact group

K: compact subgroup with normalized Haar measure ω

K-invariant functions in $C(G)$: $f(kxl) = f(x)$ for x in G and k, l in K.

These can be identified with the space $C(G//K)$.

K-invariant measures in $M_c(K)$: for each f in $C(G)$

$$\int_G f(x) \, d\mu(x) = \int_G \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \, d\mu(x)$$

These can be identified with the functions in the space $M_c(G//K)$, which can be identified with a closed subalgebra of $M_c(K)$.
Invariant functions and measures

G: locally compact group

K: compact subgroup with normalized Haar measure ω

K-invariant functions in $C(G)$: $f(kxl) = f(x)$ for x in G and k, l in K.
These can be identified with the space $C(G//K)$.

K-invariant measures in $M_c(K)$: for each f in $C(G)$

$$\int_G f(x) \, d\mu(x) = \int_G \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \, d\mu(x)$$

These can be identified with the functions in the space $M_c(G//K)$, which can be identified with a closed subalgebra of $M_c(K)$.

The pair (G, K) is called a Gelfand pair if the algebra $M_c(G//K)$ is commutative.
Invariant functions and measures

\(G \): locally compact group

\(K \): compact subgroup with normalized Haar measure \(\omega \)

\(K \)-invariant functions in \(\mathcal{C}(G) \): \(f(kxl) = f(x) \) for \(x \) in \(G \) and \(k, l \) in \(K \).

These can be identified with the space \(\mathcal{C}(G//K) \).

\(K \)-invariant measures in \(\mathcal{M}_c(K) \): for each \(f \) in \(\mathcal{C}(G) \)

\[
\int_G f(x) \, d\mu(x) = \int_G \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \, d\mu(x)
\]

These can be identified with the functions in the space \(\mathcal{M}_c(G//K) \), which can be identified with a closed subalgebra of \(\mathcal{M}_c(K) \).

The pair \((G, K)\) is called a **Gelfand pair** if the algebra \(\mathcal{M}_c(G//K) \) is commutative.

The dual of \(\mathcal{C}(G//K) \) can be identified with \(\mathcal{M}_c(G//K) \).
Invariant functions and measures

\(G \): locally compact group

\(K \): compact subgroup with normalized Haar measure \(\omega \)

\(K \)-invariant functions in \(\mathcal{C}(G) \): \(f(kxl) = f(x) \) for \(x \) in \(G \) and \(k, l \) in \(K \).

These can be identified with the space \(\mathcal{C}(G//K) \).

\(K \)-invariant measures in \(\mathcal{M}_c(K) \): for each \(f \) in \(\mathcal{C}(G) \)

\[
\int_G f(x) \, d\mu(x) = \int_G \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \, d\mu(x)
\]

These can be identified with the functions in the space \(\mathcal{M}_c(G//K) \), which can be identified with a closed subalgebra of \(\mathcal{M}_c(K) \).

The pair \((G, K) \) is called a \textit{Gelfand pair} if the algebra \(\mathcal{M}_c(G//K) \) is commutative.

The dual of \(\mathcal{C}(G//K) \) can be identified with \(\mathcal{M}_c(G//K) \).
The projection $f \mapsto f^\#$ on $\mathcal{C}(G)$ is defined as

$$f^\#(x) = \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \quad \text{for} \; x \in G.$$

The projection $\mu \mapsto \mu^\#$ on $\mathcal{M}_c(G)$ is defined as

$$\langle \mu^\#, f \rangle = \int_G f^\#(x) \, d\mu(x) \quad \text{for} \; f \in \mathcal{C}(G).$$

Then $f \mapsto f^\#$ is a continuous linear mapping from $\mathcal{C}(G)$ onto $\mathcal{C}(G//K)$ and its adjoint is $\mu \mapsto \mu^\#$:

$$\langle \mu, f^\# \rangle = \langle \mu^\#, f \rangle$$

further f is K-invariant if and only if $f = f^\#$ and μ is K-invariant if and only if $\mu = \mu^\#$.
The projection $f \mapsto f^#$ on $\mathcal{C}(G)$ is defined as

$$f^#(x) = \int_K \int_K f(kxl) \, d\omega(k) \, d\omega(l) \quad \text{for} \quad x \in G.$$

The projection $\mu \mapsto \mu^#$ on $\mathcal{M}_c(G)$ is defined as

$$\langle \mu^#, f \rangle = \int_G f^#(x) \, d\mu(x) \quad \text{for} \quad f \in \mathcal{C}(G).$$

Then $f \mapsto f^#$ is a continuous linear mapping from $\mathcal{C}(G)$ onto $\mathcal{C}(G//K)$ and its adjoint is $\mu \mapsto \mu^#$:

$$\langle \mu, f^# \rangle = \langle \mu^#, f \rangle$$

further f is K-invariant if and only if $f = f^#$ and μ is K-invariant if and only if $\mu = \mu^#$.

László Székelyhidi
Spectral Synthesis on Affine Groups
Suppose that \((G, K)\) is a Gelfand pair. Then the measures \(\delta_y^#\) commute for all \(y\) in \(G\): for each \(f\) in \(C(G//K)\) we have

\[
\langle \delta_y^# \ast \delta_z^#, f \rangle = \int_K f(ykz) \, d\omega(k) = \int_K f(zky) \, d\omega(k).
\]

Similarly, the operators \(\tau_y\) defined on \(C(G//K)\) by

\[
\tau_y f = \delta_{y^{-1}}^# \ast f = \int f(xz^{-1}) \, d\delta_{y^{-1}}^#(z) = \int_K f(xky) \, d\omega(k)
\]

form a commuting family for \(y\) in \(G\): these are the \(K\)-translations. \(K\)-translation invariant closed linear subspaces of \(C(G)\) are called \(K\)-varieties.
Suppose that (G, K) is a Gelfand pair. Then the measures $\delta_y^\#$ commute for all y in G: for each f in $C(G//K)$ we have

$$\langle \delta_y^\# \ast \delta_z^\#, f \rangle = \int_K f(ykz) \, d\omega(k) = \int_K f(zky) \, d\omega(k).$$

Similarly, the operators τ_y defined on $C(G//K)$ by

$$\tau_y f = \delta_y^\# \ast f = \int xz^{-1} f(xz^{-1}) d\delta_y^\#(z) = \int_K f(xky) \, d\omega(k)$$

form a commuting family for y in G: these are the K-translations. K-translation invariant closed linear subspaces of $C(G)$ are called K-varieties. One-dimensional K-varieties are spanned by K-spherical functions which are the common K-invariant eigenfunctions s of all K-translations: $\tau_y s = s$ for each y in G:

$$\int_K f(xky) \, d\omega(k) = f(x)f(y).$$
Suppose that \((G, K)\) is a Gelfand pair. Then the measures \(\delta_y^\#\) commute for all \(y\) in \(G\): for each \(f\) in \(C(G//K)\) we have

\[
\langle \delta_y^\# * \delta_z^\#, f \rangle = \int_K f(ykz) \, d\omega(k) = \int_K f(zky) \, d\omega(k).
\]

Similarly, the operators \(\tau_y\) defined on \(C(G//K)\) by

\[
\tau_y f = \delta_{y^{-1}}^\# * f = \int f(xz^{-1}) \, d\delta_{y^{-1}}^\#(z) = \int_K f(xky) \, d\omega(k)
\]

form a commuting family for \(y\) in \(G\): these are the \(K\)-translations. \(K\)-translation invariant closed linear subspaces of \(C(G)\) are called \(K\)-varieties. One-dimensional \(K\)-varieties are spanned by \(K\)-spherical functions which are the common \(K\)-invariant eigenfunctions \(s\) of all \(K\)-translations: \(\tau_y s = s\) for each \(y\) in \(G\):

\[
\int_K f(xky) \, d\omega(k) = f(x)f(y).
\]
We say that K-spectral analysis holds for a K-variety if every nonzero K-subvariety of it contains a K-spherical function. We say that K-spectral analysis holds for G if K-spectral analysis holds for every K-variety.

In a commutative complex algebra A a maximal ideal M is called exponential maximal ideal, if A/M is isomorphic to the complex field.

K-spectral analysis

K-spectral analysis holds for the K-variety V if and only if for every closed maximal ideal M of the residue algebra $\mathcal{M}_c(G//K)/\text{Ann } V$ is exponential. K-spectral analysis holds for G if and only if every closed maximal ideal of $\mathcal{M}_c(G//K)$ is exponential.
We say that K-spectral analysis holds for a K-variety if every nonzero K-subvariety of it contains a K-spherical function. We say that K-spectral analysis holds for G if K-spectral analysis holds for every K-variety.

In a commutative complex algebra A a maximal ideal M is called \textit{exponential maximal ideal}, if A/M is isomorphic to the complex filed.
Modified differences and K-monomials

For each K-spherical function s we define the modified K-difference

$$\Delta_{s; y} = \delta_y^* - s(y)\delta_e,$$

and their products $\Delta_{s; y_1, y_2, \ldots, y_{k+1}} = \prod_{j=1}^{k+1} \Delta_{s; y_j}$. Given the K-spherical function s the closed ideal generated by all modified differences $\Delta_{s; y}$ with y in G is an exponential maximal ideal, denoted by M_s. The K-invariant f is called an s-monomial if $\dim \tau_K(f) < \infty$ is and there is a natural number k such that

$$M_s^{k+1} \subseteq \text{Ann} \tau_K(f)$$

where $\tau_K(f)$ denotes the K-variety generated by f. This is equivalent to the functional equation

$$\Delta_{s; y_1, y_2, \ldots, y_{k+1}} \ast f(x) = 0$$

for each $x, y_1, y_2, \ldots, y_{k+1}$ in G. If f is nonzero, then s is uniquely determined, and the smallest k with this property is called the degree of the s-monomial f.

László Székelyhidi
Spectral Synthesis on Affine Groups
For instance, \(s \)-monomials of degree 2 are of the form \(cs + f \), where \(f \) is a \(K \)-invariant continuous solutions of the \(K \)-sine equation:

\[
\int_K f(xky) \, d\omega(k) = f(x)s(y) + f(y)s(x).
\]
For instance, s-monomials of degree 2 are of the form $cs + f$, where f is a K-invariant continuous solutions of the K-sine equation:

$$\int_K f(xky) \, d\omega(k) = f(x)s(y) + f(y)s(x).$$

We say that the K-variety is K-synthesizable if all K-monomials span a dense subspace in the variety. We say that K-spectral synthesis holds for a K-variety, if every nonzero subvariety of it is K-synthesizable.

K-spectral synthesis implies K-spectral analysis.
K-spectral synthesis

For instance, s-monomials of degree 2 are of the form $cs + f$, where f is a K-invariant continuous solutions of the K-sine equation:

$$
\int_K f(xky) d\omega(k) = f(x)s(y) + f(y)s(x).
$$

We say that the K-variety is K-synthesizable if all K-monomials span a dense subspace in the variety. We say that K-spectral synthesis holds for a K-variety, if every nonzero subvariety of it is K-synthesizable.

K-spectral synthesis implies K-spectral analysis.

K-synthesizability

The K-variety V is synthesizable if and only if its annihilator is the intersection of those cofinite closed ideals of $M_c(G//K)$ which contain it.
For instance, s-monomials of degree 2 are of the form $cs + f$, where f is a K-invariant continuous solutions of the K-sine equation:

$$\int_K f(xky) \, d\omega(k) = f(x)s(y) + f(y)s(x).$$

We say that the K-variety is K-synthesizable if all K-monomials span a dense subspace in the variety. We say that K-spectral synthesis holds for a K-variety, if every nonzero subvariety of it is K-synthesizable.

K-spectral synthesis implies K-spectral analysis.

K-synthesizability

The K-variety V is synthesizable if and only if its annihilator is the intersection of those cofinite closed ideals of $\mathcal{M}_c(G//K)$ which contain it.

If K is a normal subgroup and G/K is commutative, then all these concepts coincide with the corresponding spectral analysis and synthesis concepts on the locally compact Abelian group G/K. Obviously, this is the case if G itself is commutative.
For instance, s-monomials of degree 2 are of the form $cs + f$, where f is a K-invariant continuous solutions of the K-sine equation:

$$\int_K f(xky) \, d\omega(k) = f(x)s(y) + f(y)s(x).$$

We say that the K-variety is K-synthesizable if all K-monomials span a dense subspace in the variety. We say that K-spectral synthesis holds for a K-variety, if every nonzero subvariety of it is K-synthesizable.

K-spectral synthesis implies K-spectral analysis.

K-synthesizability

The K-variety V is synthesizable if and only if its annihilator is the intersection of those cofinite closed ideals of $\mathcal{M}_c(G//K)$ which contain it.

If K is a normal subgroup and G/K is commutative, then all these concepts coincide with the corresponding spectral analysis and synthesis concepts on the locally compact Abelian group G/K. Obviously, this is the case if G itself is commutative.
Semidirect products

Let N be a locally compact topological group and K is a compact group of automorphisms of N. We consider the semidirect product of K and N: $K \ltimes N$: it is $K \ltimes N$ equipped with the operation

$$(k, n) \cdot (l, m) = (k \circ l, (k \cdot m)n),$$

where \circ is the composition of the automorphisms k, l, \cdot is the effect of the automorphisms on the elements of N, and juxtaposition is the group operation in N. It turns out that this operation defines a group structure on $K \ltimes N$, where the identity is (id, e), with the identity automorphism id of N and the identity element e of n, and the inverse of (k, n) is $(k^{-1}, k^{-1} \cdot u^{-1})$. With the product topology $G = K \ltimes N$ is a locally compact topological group, the semidirect product of K and N. The group N is topologically isomorphic to the closed normal subgroup $\{(id, n) : n \in N\}$, and the group K is topologically isomorphic to the compact subgroup $\{(k, e) : k \in K\}$. We shall identify these isomorphic groups:

$$K = \{(k, e) : k \in K\}, \quad N = \{(id, n) : n \in N\}.$$
Semidirect products

Let N be a locally compact topological group and K is a compact group of automorphisms of N. We consider the semidirect product of K and N: $K \ltimes N$: it is $K \times N$ equipped with the operation

$$(k, n) \cdot (l, m) = (k \circ l, (k \cdot m)n),$$

where \circ is the composition of the automorphisms k, l, \cdot is the effect of the automorphisms on the elements of N, and juxtaposition is the group operation in N. It turns out that this operation defines a group structure on $K \times N$, where the identity is (id, e), with the identity automorphism id of N and the identity element e of n, and the inverse of (k, n) is $(k^{-1}, k^{-1} \cdot u^{-1})$. With the product topology $G = K \ltimes N$ is a locally compact topological group, the semidirect product of K and N. The group N is topologically isomorphic to the closed normal subgroup $\{(id, n) : n \in N\}$, and the group K is topologically isomorphic to the compact subgroup $\{(k, e) : k \in K\}$. We shall identify these isomorphic groups:

$$K = \{(k, e) : k \in K\}, \quad N = \{(id, n) : n \in N\}.$$
Example: Affine groups

Let X be a finite dimensional vector space and K a compact subgroup of $GL(X)$, the general linear group of X with the normalized Haar measure ω. Then the set $K \times X$ acts on X: for S in K and u in V let $(S, u)x$ defined by the affine mapping

$$(S, u)x = Sx + u$$

for each x in V. The composition of affine mappings defines the operation on $K \times X$ as

$$(S, u) \cdot (T, v) = (S \circ T, Sv + u)$$

and with the identity $(id, 0)$ and inverse $(S, u)^{-1} = (S^{-1}, -S^{-1}u)$ we obtain the group

$$\text{Aff } K = K \ltimes X,$$

the semidirect product of K and X. Here – as we have seen – K is topologically isomorphic to the compact subgroup $\{(S, 0) : S \in K\}$ and X is topologically isomorphic to the closed normal subgroup $\{(id, u) : u \in X\}$.

Example: Semidirect products

\(K \)-invariant functions are exactly those functions \((S, u) \mapsto f(S, u)\) which depend only on \(u\) and are invariant with respect to \(K\):

\[
f(S, u) = f(id, u) = f(id, Su)
\]

for each \(S\) in \(K\) and \(u\) in \(X\). Hence \(C(\text{Aff } K//K)\) can be identified with a closed subspace of \(C(X)\), the space of \(K\)-radial functions. Similarly, the space of \(K\)-invariant measures \(M_c(\text{Aff } K//K)\) on \(\text{Aff } K\) can be identified with a closed subspace of \(M_c(X)\), the space of \(K\)-radial measures,

Then \(\text{Aff } K\) is a locally compact group, \(K\) is topologically isomorphic to the compact subgroup \(\{(L, 0) : L \in K\}\), and \(\mathbb{R}^n\) is topologically isomorphic to the normal subgroup \(\{\text{id}, u) : u \in \mathbb{R}^n\}\).
K-invariant functions are exactly those functions $(S, u) \mapsto f(S, u)$ which depend only on u and are invariant with respect to K:

$$f(S, u) = f(id, u) = f(id, Su)$$

for each S in K and u in X. Hence $C(\text{Aff } K//K)$ can be identified with a closed subspace of $C(X)$, the space of K-radial functions. Similarly, the space of K-invariant measures $\mathcal{M}_c(\text{Aff } K//K)$ on $\text{Aff } K$ can be identified with a closed subspace of $\mathcal{M}_c(X)$, the space of K-radial measures.

Then $\text{Aff } K$ is a locally compact group, K is topologically isomorphic to the compact subgroup $\{(L, 0) : L \in K\}$, and \mathbb{R}^n is topologically isomorphic to the normal subgroup $\{(id, u) : u \in \mathbb{R}^n\}$.
The Poincaré group

We consider the real vector space $\mathbb{R}^{1,3} = \mathbb{R} \oplus \mathbb{R}^3$ equipped with the *indefinite inner product*

$$\langle v, w \rangle = v_0 w_0 - \sum_{j=1}^{3} v_j w_j,$$

where $v = (v_0, v_1, v_2, v_3)$ and $w = (w_0, w_1, w_2, w_3)$. The *isometry group* $O(1, 3)$ of this indefinite inner product space is called the *Lorentz group*. The affine group of the Lorentz group

$$\text{Aff } O(1, 3) = O(1, 3) \ltimes \mathbb{R}^{1,3}$$

is the *Poincaré group*.
The Poincaré group

We consider the real vector space \(\mathbb{R}^{1,3} = \mathbb{R} \oplus \mathbb{R}^3 \) equipped with the indefinite inner product

\[
\langle v, w \rangle = v_0 w_0 - \sum_{j=1}^{3} v_j w_j,
\]

where \(v = (v_0, v_1, v_2, v_3) \) and \(w = (w_0, w_1, w_2, w_3) \). The isometry group \(O(1,3) \) of this indefinite inner product space is called the Lorentz group. The affine group of the Lorentz group

\[
\text{Aff } O(1,3) = O(1,3) \ltimes \mathbb{R}^{1,3}
\]

is the Poincaré group.
The group of Euclidean motions

We consider the vector space \mathbb{R}^n and the orthogonal group $O(n)$, the group of rotations. Together with translations they generate the group of Euclidean motions: rigid motions leaving the origin fixed. This is the affine group of $O(n)$:

$$\text{Aff } O(n) = O(n) \times \mathbb{R}^n$$

which acts on \mathbb{R}^n by

$$(O, u)x = Ox + u$$

for O in $O(n)$ and x, u in \mathbb{R}^n.

Clearly, for $n = 1$ we have $O(1) = \{+1, -1\}$. $O(1)$-spherical functions are the functions of the form $x \mapsto \cosh \lambda x$ with arbitrary complex λ.
The group of Euclidean motions

We consider the vector space \mathbb{R}^n and the orthogonal group $O(n)$, the group of rotations. Together with translations they generate the group of Euclidean motions: rigid motions leaving the origin fixed. This is the affine group of $O(n)$:

$$\text{Aff } O(n) = O(n) \times \mathbb{R}^n$$

which acts on \mathbb{R}^n by

$$(O, u)x = Ox + u$$

for O in $O(n)$ and x, u in \mathbb{R}^n.

Clearly, for $n = 1$ we have $O(1) = \{+1, -1\}$. $O(1)$-spherical functions are the functions of the form $x \mapsto \cosh \lambda x$ with arbitrary complex λ.
The group of proper motions

We consider the vector space \mathbb{R}^n and the *special orthogonal group* $SO(n)$, the group of proper rotations: orthogonal operators with determinant $+1$. Together with translations they generate the group of *proper Euclidean motions*: rigid motions which preserve orientation: no reflection is included. This is the affine group of $SO(n)$:

$$\text{Aff } SO(n) = SO(n) \times \mathbb{R}^n$$

which acts on \mathbb{R}^n by

$$(S, u)x = Sx + u$$

for S in $SO(n)$ and x, u in \mathbb{R}^n.

Clearly, for $n = 1$ we have $SO(1) = \{id\}$, hence $\text{Aff } SO(1) = \mathbb{R}$ — in one dimension the proper Euclidean motions are exactly the translations.
Example: Proper Euclidean motions

The group of proper motions

We consider the vector space \mathbb{R}^n and the *special orthogonal group* $SO(n)$, the group of proper rotations: orthogonal operators with determinant $+1$. Together with translations they generate the group of *proper Euclidean motions*: rigid motions which preserve orientation: no reflection is included. This is the affine group of $SO(n)$:

$$\text{Aff } SO(n) = SO(n) \times \mathbb{R}^n$$

which acts on \mathbb{R}^n by

$$(S, u)x = Sx + u$$

for S in $SO(n)$ and x, u in \mathbb{R}^n.

Clearly, for $n = 1$ we have $SO(1) = \{id\}$, hence $\text{Aff } SO(1) = \mathbb{R}$ – in one dimension the proper Euclidean motions are exactly the translations.
Example: Proper Euclidean motions

The $SO(n)$-invariant functions can be identified with those continuous functions $f : \mathbb{R}^n \to \mathbb{C}$ with $f(Sx) = f(x)$ for each S in $SO(n)$ and x in \mathbb{R}^n. These are called radial functions as $f(x)$ depends only on $\|x\|$:

$$f(x) = \varphi(\|x\|)$$

for some continuous $\varphi : \mathbb{R} \to \mathbb{C}$. Similarly, $\mathcal{M}_c(\text{Aff } SO(n))$ is identified with those measures in $\mathcal{M}_c(\mathbb{R}^n)$ with

$$\int_{\mathbb{R}^n} f(Sx) \, d\mu(x) = \int_{\mathbb{R}^n} f(x) \, d\mu(x)$$

for each f in $\mathcal{C}(\mathbb{R}^n)$ and S in $SO(n)$: radial measures.
Example: Proper Euclidean motions

The $SO(n)$-invariant functions can be identified with those continuous functions $f : \mathbb{R}^n \to \mathbb{C}$ with $f(Sx) = f(x)$ for each S in $SO(n)$ and x in \mathbb{R}^n. These are called radial functions as $f(x)$ depends only on $\|x\|$: $f(x) = \varphi(\|x\|)$ for some continuous $\varphi : \mathbb{R} \to \mathbb{C}$. Similarly, $\mathcal{M}_c(\text{Aff } SO(n))$ is identified with those measures in $\mathcal{M}_c(\mathbb{R}^n)$ with

$$\int_{\mathbb{R}^n} f(Sx) \, d\mu(x) = \int_{\mathbb{R}^n} f(x) \, d\mu(x)$$

for each f in $C(\mathbb{R}^n)$ and S in $SO(n)$: radial measures. Convolution in $\mathcal{M}_c(\text{Aff } SO(n) // SO(n))$ coincides with the ordinary convolution in \mathbb{R}^n, hence $(\text{Aff } SO(n), SO(n))$ is a Gelfand pair.

Radial functions: $C_r(\mathbb{R}^n) \approx C(\text{Aff } (SO(n)) // SO(n))$

Radial measures: $\mathcal{M}_r(\mathbb{R}^n) \approx \mathcal{M}_c(\text{Aff } (SO(n)) // SO(n))$
Example: Proper Euclidean motions

The $SO(n)$-invariant functions can be identified with those continuous functions $f : \mathbb{R}^n \to \mathbb{C}$ with $f(Sx) = f(x)$ for each S in $SO(n)$ and x in \mathbb{R}^n. These are called radial functions as $f(x)$ depends only on $\|x\|$: $f(x) = \varphi(\|x\|)$ for some continuous $\varphi : \mathbb{R} \to \mathbb{C}$. Similarly, $\mathcal{M}_c(\text{Aff } SO(n))$ is identified with those measures in $\mathcal{M}_c(\mathbb{R}^n)$ with

$$\int_{\mathbb{R}^n} f(Sx) \, d\mu(x) = \int_{\mathbb{R}^n} f(x) \, d\mu(x)$$

for each f in $C(\mathbb{R}^n)$ and S in $SO(n)$: radial measures. Convolution in $\mathcal{M}_c(\text{Aff } SO(n)//SO(n))$ coincides with the ordinary convolution in \mathbb{R}^n, hence $(\text{Aff } SO(n), SO(n))$ is a Gelfand pair.

Radial functions: $C_r(\mathbb{R}^n) \approx C(\text{Aff } (SO(n))//SO(n))$

Radial measures: $\mathcal{M}_r(\mathbb{R}^n) \approx \mathcal{M}_c(\text{Aff } (SO(n))//SO(n))$
Example: Proper Euclidean motions

SO(n)-translation: for \(f \) in \(C_r(\mathbb{R}^n) \) and \(y \) in \(\mathbb{R}^n \)

\[
\tau_y(f)(x) = \int_{SO(n)} f(x + ky) \, d\omega(k)
\]

SO(n)-variety: \(V \subseteq C_r(\mathbb{R}^n) \) linear subspace, closed with respect to uniform convergence on compact sets, and for each \(f \) in \(V \) and \(y \) in \(\mathbb{R}^n \) we have \(x \mapsto \int_{SO(n)} f(x + ky) \, d\omega(k) \) is in \(V \)

SO(n)-spherical function: \(s \neq 0 \) in \(C_r(\mathbb{R}^n) \) and

\[
\int_{SO(n)} s(x + ky) \, d\omega(k) = s(x) s(y) \quad \text{for each} \quad y \in \mathbb{R}^n
\]
Example: Proper Euclidean motions

Eigenfunctions of the Laplacian

The $SO(n)$-spherical functions are exactly the normalized radial eigenfunctions of the Laplacian in \mathbb{R}^n.

Let

$$\phi(\|x\|) = s(x) \quad \text{for} \quad x \in \mathbb{R}^n,$$

then, using the radial form of the Laplacian in \mathbb{R}^n we have the Bessel differential equation

$$\frac{d^2}{dr^2} \phi(r) + \frac{n-1}{r} \frac{d}{dr} \phi(r) = \lambda \phi(r),$$

with ϕ is regular at 0 and $\phi(0) = 1$. Let J_λ denote the function

$$J_\lambda(r) = \Gamma\left(\frac{n}{2}\right) \sum_{k=0}^{\infty} \frac{\lambda^k}{k! \Gamma(k + \frac{n}{2})} \left(\frac{r}{2}\right)^{2k}.$$

Then s is an $SO(n)$-spherical function if and only if

$$s(x) = s_\lambda(x) = J_\lambda(\|x\|)$$

holds for each x in \mathbb{R}^n with some complex number λ.
Example: Proper Euclidean motions

Eigenfunctions of the Laplacian

The \(SO(n) \)-spherical functions are exactly the normalized radial eigenfunctions of the Laplacian in \(\mathbb{R}^n \).

Let

\[
\varphi(\|x\|) = s(x) \quad \text{for} \quad x \in \mathbb{R}^n,
\]

then, using the radial form of the Laplacian in \(\mathbb{R}^n \) we have the Bessel differential equation

\[
\frac{d^2}{dr^2} \varphi(r) + \frac{n-1}{r} \frac{d}{dr} \varphi(r) = \lambda \varphi(r),
\]

with \(\varphi \) is regular at 0 and \(\varphi(0) = 1 \). Let \(J_\lambda \) denote the function

\[
J_\lambda(r) = \Gamma\left(\frac{n}{2}\right) \sum_{k=0}^{\infty} \frac{\lambda^k}{k! \Gamma(k + \frac{n}{2})} \left(\frac{r}{2}\right)^{2k}.
\]

Then \(s \) is an \(SO(n) \)-spherical function if and only if

\[
s(x) = s_\lambda(x) = J_\lambda(\|x\|)
\]

holds for each \(x \) in \(\mathbb{R}^n \) with some complex number \(\lambda \).
SO(n)-monomials

Derivatives with respect to the parameter

Given the SO(n)-spherical function s_λ with some complex λ the s_λ-monomials of degree at most k are exactly the linear combinations of the derivatives $\frac{d^j}{d\lambda^j} s_\lambda$ for $j = 0, 1, \ldots, k$.

SO(n)-spectral analysis and synthesis

Every nonzero variety contains an SO(n)-spherical function, moreover, all functions of the form $\frac{d^j}{d\lambda^j} s_\lambda$ span a dense subspace in every variety.
Derivatives with respect to the parameter

Given the $SO(n)$-spherical function s_λ with some complex λ the s_λ-monomials of degree at most k are exactly the linear combinations of the derivatives $\frac{d^j}{d\lambda^j} s_\lambda$ for $j = 0, 1, \ldots, k$.

$SO(n)$-spectral analysis and synthesis

Every nonzero variety contains an $SO(n)$-spherical function, moreover, all functions of the form $\frac{d^j}{d\lambda^j} s_\lambda$ span a dense subspace in every variety.

As $SO(1) = \{id\}$, hence $\text{Aff } SO(1) = \mathbb{R}$, $SO(1)$-varieties are exactly the closed translation invariant subspaces of $C(\mathbb{R})$. $SO(1)$-spherical functions are exactly the exponentials: $s_\lambda(x) = e^{\lambda x}$, and $SO(1)$-monomials are the linear combinations of the functions

$$\frac{d^j}{d\lambda^j} s_\lambda(x) = x^j e^{\lambda x}.$$

Our spectral synthesis theorem is a proper generalization of L. Schwartz’s theorem to \mathbb{R}^n.
Derivatives with respect to the parameter

Given the $SO(n)$-spherical function s_{λ} with some complex λ the s_{λ}-monomials of degree at most k are exactly the linear combinations of the derivatives $\frac{d^j}{d\lambda^j}s_{\lambda}$ for $j = 0, 1, \ldots, k$.

$SO(n)$-spectral analysis and synthesis

Every nonzero variety contains an $SO(n)$-spherical function, moreover, all functions of the form $\frac{d^j}{d\lambda^j}s_{\lambda}$ span a dense subspace in every variety.

As $SO(1) = \{id\}$, hence Aff $SO(1) = \mathbb{R}$, $SO(1)$-varieties are exactly the closed translation invariant subspaces of $C(\mathbb{R})$. $SO(1)$-spherical functions are exactly the exponentials: $s_{\lambda}(x) = e^{\lambda x}$, and $SO(1)$-monomials are the linear combinations of the functions

$$\frac{d^j}{d\lambda^j}s_{\lambda}(x) = x^j e^{\lambda x}.$$

Our spectral synthesis theorem is a proper generalization of L. Schwartz’s theorem to \mathbb{R}^n.