Product and quotient sets of the finite subsets of rationals and integers.

Yurii Shteinikov

Steklov Mathematical Institute.

Pecs, 2017
Start

1. \(Q \) is large positive integer.
2. All logarithms are on base \(e \).

Plan of the talk

1. Product sets of rationals
2. Product and quotient sets of integers
Definitions

1. Let A, B be the sets rational numbers:

 $$A, B \subseteq F_Q = \{r/s, 1 \leq r, s \leq Q\}$$

2. The set AB and is called the product set of $A \cap B$, which is defined as

 $$AB := \{ab : a \in A, b \in B\},$$

3. I will talk about some results for the lower bound of $|AB|$.
Some history

J. Bourgain, S. Konyagin and I. Shparlinski proved the following Theorem.

THEOREM 1 [2008]

Let $A, B \subseteq F_Q$, then we have the following estimate

$$|AB| \geq |A||B|\exp\left\{(-9 + o(1)) \frac{\log Q}{\sqrt{\log \log Q}} \right\}, Q \to \infty, \quad (1)$$

J. Cilleruelo obtained a slightly better result using a different method.

THEOREM 2 [2016]

Let $A, B \subseteq F_Q$, then we have the following estimate

$$|AB| \geq |A||B|\exp\left\{(-4\sqrt{\log 2} + o(1)) \frac{\log Q}{\sqrt{\log \log Q}} \right\}, Q \to \infty, \quad (2)$$
Some history

J. Bourgain, S. Konyagin and I. Shparlinski proved the following Theorem.

THEOREM 1 [2008]

Let $A, B \subseteq F_Q$, then we have the following estimate

$$|AB| \geq |A||B|\exp\left\{(-9 + o(1))\frac{\log Q}{\sqrt{\log \log Q}}\right\}, Q \to \infty, \quad (1)$$

J. Cilleruelo obtained a slightly better result using a different method.

THEOREM 2 [2016]

Let $A, B \subseteq F_Q$, then we have the following estimate

$$|AB| \geq |A||B|\exp\left\{(-4\sqrt{\log 2} + o(1))\frac{\log Q}{\sqrt{\log \log Q}}\right\}, Q \to \infty, \quad (2)$$
Applications

1. Distribution of elements of cosets of multiplicative subgroups

2. Fixed points of discrete logarithm

Suppose that $A, B \in [1, Q]$.

It is easy to see that

$$|AB| \geq |A||B| \exp \left\{ (-2\log 2 + o(1)) \frac{\log Q}{\log \log Q} \right\}, \quad Q \to \infty.$$

Proof:

1. The number $r_{A,B}(n)$ of pairs (a, b) such that $n = ab$ is less or equal to $\tau(n)$.
2. $n \leq Q^2$ and we are using well-known upper bound for $\tau(n)$,

$$\tau(n) < \exp \left\{ (\log 2 + o(1)) \frac{\log n}{\log \log n} \right\}, \quad n \to \infty.$$

Suppose $A, B \in F_Q$. Then the proof does not work, – the problem is in the first step.
Applications

1. Distribution of elements of cosets of multiplicative subgroups

2. Fixed points of discrete logarithm

Suppose that $A, B \in [1, Q]$.

It is easy to see that

$$|AB| \geq |A||B| \exp\left\{(-2\log 2 + o(1)) \frac{\log Q}{\log \log Q}\right\}, Q \to \infty.$$

Proof:

1. The number $r_{A,B}(n)$ of pairs (a, b) such that $n = ab$ is less or equal to $\tau(n)$.

2. $n \leq Q^2$ and we are using well-known upper bound for $\tau(n)$,

$$\tau(n) < \exp\left\{(\log 2 + o(1)) \frac{\log n}{\log \log n}\right\}, n \to \infty.$$

Suppose $A, B \in F_Q$. Then the proof does not work, – the problem is in the first step.
Applications

1. Distribution of elements of cosets of multiplicative subgroups

2. Fixed points of discrete logarithm

Suppose that $A, B \in [1, Q]$.

It is easy to see that

$$|AB| \geq |A||B| \exp\left\{(-2\log 2 + o(1)) \frac{\log Q}{\log \log Q}\right\}, \ Q \to \infty.$$

Proof:

1. The number $r_{A,B}(n)$ of pairs (a, b) such that $n = ab$ is less or equal to $\tau(n)$.
2. $n \leq Q^2$ and we are using well-known upper bound for $\tau(n)$,

$$\tau(n) < \exp\left\{(\log 2 + o(1)) \frac{\log n}{\log \log n}\right\}, \ n \to \infty.$$

Suppose $A, B \in F_Q$. Then the proof does not work, – the problem is in the first step.
Main result

THEOREM 1 [Y.S.] There is an absolute constant $C > 0$ such that if $A, B \subseteq F_Q$, then we have the following estimate

$$|AB| \geq |A||B|\exp\left\{(-C + o(1))\frac{\log Q}{\log \log Q}\right\}, \quad Q \to \infty, \quad (3)$$

The constant C can be taken $8 \log 2$. In the case $A = B$ one can take $C = 6 \log 2$ and C cannot be taken smaller than $4 \log 2$.
Elements of the proof

Consider the case $A = B$.

Proof

1. Let $\nu = \{\nu_p\}, p \leq Q$ be vector where each coordinate is $+1$ or -1.
2. Define the set $A_\nu \subseteq A$ as is written below

$$A_\nu = \left\{ a \in A : \forall p \left\{ \begin{array}{l} \nu(p) = 1 \Rightarrow \nu_p(a) \geq 0; \\
\nu(p) = -1 \Rightarrow \nu_p(a) \leq 0. \end{array} \right. \right\}$$

3. Consider random set A_ν, where vector $\nu = \{\nu(p)_{p \leq Q}\}$ is a random variable (vector), where each coordinate $\nu(p)$ is ± 1 with probability $\frac{1}{2}$ and $\nu(p)$ are independent for different p.
4. It is easy to estimate mean value (expectation) of $|A_\nu|$.
5. if r/s and $r'/s' \in A_\nu$, then $\text{gcd}(r, s') = \text{gcd}(r', s) = 1$ and the result easily follows.
The result about the energy of the sets A, B

The multiplicative energy $E(A, B)$ of two sets A, B is

$$E(A, B) = |\{a_1b_1 = a_2b_2 : a_1, a_2 \in A; b_1, b_2 \in B\}|.$$

It is easy to show that $|AB| \geq \frac{|A|^2|B|^2}{E(A,B)}$.

We note that using good estimates of $E(A, B)$ one can deduce non-trivial estimates of the size of AB but not vice versa.

THEOREM [Y.S.] *There is an absolute constant $C > 0$ such that if $A, B \subseteq F_Q$ then we have*

$$E(A, B) \leq |A||B| \exp\left\{(C + o(1))\frac{\log Q}{\log \log Q}\right\}, \; Q \to \infty, \; (4)$$

and C can be taken $8 \log 2$.

This Theorem generalize the previous result.
The result about the energy of the sets A, B

The multiplicative energy $E(A, B)$ of two sets A, B is

$$E(A, B) = |\{a_1 b_1 = a_2 b_2 : a_1, a_2 \in A; b_1, b_2 \in B\}|.$$

It is easy to show that $|AB| \geq \frac{|A|^2 |B|^2}{E(A, B)}$.

We note that using good estimates of $E(A, B)$ one can deduce non-trivial estimates of the size of AB but not vice versa.

THEOREM [Y.S.] *There is an absolute constant $C > 0$ such that if $A, B \subseteq \mathbb{F}_Q$ then we have*

$$E(A, B) \leq |A||B| \exp\left((C + o(1)) \frac{\log Q}{\log \log Q}\right), \; Q \to \infty, \quad (4)$$

and C can be taken $8 \log 2$. This Theorem generalize the previous result.
The result about the energy of the sets A, B

The multiplicative energy $E(A, B)$ of two sets A, B is

$$E(A, B) = |\{a_1b_1 = a_2b_2 : a_1, a_2 \in A; b_1, b_2 \in B\}|.$$

It is easy to show that $|AB| \geq \frac{|A|^2|B|^2}{E(A, B)}$. We note that using good estimates of $E(A, B)$ one can deduce non-trivial estimates of the size of AB but not vice versa.

Theorem [Y.S.] There is an absolute constant $C > 0$ such that if $A, B \subseteq F\mathbb{Q}$ then we have

$$E(A, B) \leq |A||B| \exp\left\{(C + o(1))\frac{\log Q}{\log \log Q}\right\}, \quad Q \to \infty, \quad (4)$$

and C can be taken $8\log 2$.

This Theorem generalize the previous result.
The result about the energy of the sets A, B

The multiplicative energy $E(A, B)$ of two sets A, B is

$$E(A, B) = |\{a_1b_1 = a_2b_2 : a_1, a_2 \in A; b_1, b_2 \in B\}|.$$

It is easy to show that $|AB| \geq \frac{|A|^2|B|^2}{E(A,B)}$.

We note that using good estimates of $E(A, B)$ one can deduce non-trivial estimates of the size of AB but not vice versa.

THEOREM [Y.S.] *There is an absolute constant $C > 0$ such that if $A, B \subseteq \mathbb{F}_Q$ then we have*

$$E(A, B) \leq |A||B| \exp\left\{(C + o(1))\frac{\log Q}{\log \log Q}\right\}, \quad Q \to \infty, \quad (4)$$

and C can be taken $8 \log 2$.

This Theorem generalize the previous result.
Quotient sets of integers

One can easily obtain the following proposition:

If $A, B \subseteq [1, Q]$ *then we have the following estimate*

$$|AB|, |A/B| \geq |A||B| \exp\left\{(-2 \log 2 + o(1)) \frac{\log Q}{\log \log Q}\right\}, \quad Q \to \infty.$$

(5)

For the case $|A/B|$ this estimate cannot be improved very much in general except for the constant $-2 \log 2$. But still the following Theorem takes place.

Theorem

There is an absolute constant $c > 0$, *such that if* $A, B \subseteq [1, Q]$ *then we have the following estimate*

$$|A/B| \geq |A||B| \exp\left\{(-2 \log 2 + c + o(1)) \frac{\log Q}{\log \log Q}\right\}, \quad Q \to \infty.$$

(6)

One can take $c = 0.1$
Questions

1) Is it possible to improve the coefficients $6 \log 2$ and $8 \log 2$ in the Theorem concerning product sets of rationals?
References

Thank you for your attention