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» Steinhaus (1950s): Are there A, B C R? such that
|TANB| =1, for every rigid motion 77

Are there two subsets of the plane which, no matter how
moved, always intersect at exactly one point?
Sierpiriski, 1958: Yes.

» Equivalent:

Z 1,a(x — b) =1, for all rotations p, x € R
beB

> In tiling language:
pA® B =R? for all rotations p.

Every rotation of A tiles (partitions) the plane when
translated at the locations B.
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» Can we have pA @ Z? = R? for all rotations p?

» Equivalent: A is a fundamental domain of all pZ?.
Or, A tiles the plane by translations at any pZ?.

» Jackson and Mauldin, 2002: Yes.

» Can A be Lebesgue measurable? We interpret tiling almost
everywhere. Results by
Sierpinski (1958), Croft (1982), Beck (1989), K. & Wolff (1999):
If such a measurable A exists then it must be large at infinity:

/ \x]%'~'6 dx = 0.
A

> In higher dimension:
K. & Wolff (1999), K. & Papadimitrakis (2002):
— No measurable Steinhaus sets exist for Z9, d > 3.
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THE LATTICE STEINHAUS QUESTION IN FOURIER
SPACE

» For f to tile with Z? its periodization
Z f(x—n)
neZ?

must be constant.
» Equivalently f(n) = 0 for all n € Z2\ {0}.
» Applying to f = 1,4 for all rotations p we get

o

o

that 14 must vanish on all circles through lattice points.
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THE LATTICE STEINHAUS QUESTION IN FOURIER
SPACE, CONT’D

» Successive circles in the zero set at distance R from the
originat distance R from the origin are about

1/VR apart.

» Many zeros = 1,4 must decay

» Decay of 14 = lack of concentration for 1,, regularity
46

> In dimension d = 2 this gives [, [x|27 " dx = cc.

» In dimension d > 3: better control of circle gap.
We get 1, is continuous (contradiction)
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THE LATTICE STEINHAUS QUESTION FOR FINITELY
MANY LATTICES

» Given lattices Aq,...,A, C RY all of volume 1
can we find measurable A which tiles with all A;?

Generically yes! 11
If the sum A} + - + A% is di-

rect then Kronecker-type den- Wi
sity theorems allow us to rear-
range a fundamental domain of
one lattice to accomodate the
others. Ui
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RESTATED FOR THE ALGEBRAICALLY INCLINED

» If G is an abelian group and Hy, ..., H, subgroups of same
index
can we find a common set of coset representatives for the
H;?

» Always possible for two subgroups Hi, H, (even in non-abelian
case).

» Fails in general: take G = Zj X Z; and the 3 copies of Zy
therein.

» No good condition is known!
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AN APPLICATION IN GABOR ANALYSIS

» Question: If K, L are two lattices in RY with
volK -volL =1,

can we find g € L2(R9), such that the (K, L) time-frequency
translates .
g(x — k)™t (ke K,lel)

form an orthogonal basis?

» Han and Wang (2000): Since vol (L*) = vol (K) let g = 1¢
where
E is a common tile for K, L*.

» Then L forms an orthogonal basis for L2(E).

» The space is partitioned in copies of E and on each copy L is
an orthogonal basis.
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B =7 x {0} OR B A FINITE SET

» Komjath (1992): There is A C R? such that for all rotations p

pA® (Z x {0}) s a tiling.

» For B C R? finite and of size 3,4,5,7:
Gao, Miller & Weiss (2007), Xuan (2012),
Henkis, Jackson & Lobe (2014):
= No such sets A.

WE SHOW HERE

» A Komjath set cannot be Lebesgue measurable.

» For any finite B C R? there is no Lebesgue measurable
Steinhaus set A.
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FINITE B: A FOURIER CONDITION

Write g = ZbeB Op.
= 65(x) = pepg € 2" is a trig. polynomial.

> Suppose 14 % dp(x) = > g la(x — b) =1 a.e.(x)
» Taking Fourier Transform:

1408 = &o.
» We conclude

supp 1, C {0} U {55 = 0}-

(Notice 14 is a tempered distribution.)
» Valid for all rotations p:

Ue (Suppﬁ) c{o}u {55 = 0}-

— The zeros of dg contain a circle.
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THEOREM
Ifp(x) =3 pep cpe?™ % js a trigonometric polynomial on RY
which vanishes on a sphere then 1)(x) = 0.

\% yA

. b
bs p.° 2

Y

b bo

by

» Enough to prove for d = 2. May assume zeros at unit circle
centered at origin.

» May also assume (bg,0) € B is unique with maximal modulus.
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» Write b = b, + ib,, for b € B, and z = x — iy, with |z| = 1.
Then (b, by) - (x,y) = R(bz) and

; z|=1 ; b
Plxy) S pe2 i) FEL S g emilbet ) g(z)
beB beB

vanishes at |z| = 1, hence g(z) =0 for all z # 0.

» For real t — 400 we have
0=g(—it) = Cboeﬂbot+0(1/t) 4 Z c,e™btTO(1/t)
beB\{(bo,0)}

Contradiction for:
unique exponential with highest exponent.
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KOMJATH SETS

The set B

o o oo o o
T

v

Suppose B = {(n,0) : n € Z} C R? and measurable A so that

Z 1,4(x —n,y) =1, for all rotations p and a.e. (x,y).
neZ

» — A has infinite measure.

v

Integrating for x € [0, 1] gives that

pAN (R x {y}) has measure 1 for almost all y € R.

v

Hence A intersects almost all lines of the plane at measure 1.




KOMJATH SETS: MEETING THE LINES THUS IS TOO
MUCH

THEOREM
There is no measurable A C R? which intersects almost all lines of

the plane in measure (length) at least C1 and at most C,, where
0< G, G < oo

» We only need C; = C, = 1 for showing there are no
measurable Komjath sets.
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LINE INTEGRALS BOUNDED ABOVE AND BELOW

» Suppose A C R? has the bounded line intersection property.
View R? embedded in R3.
» Define f : R3 — R* by (convergence is clear)

f(z) = /R2 1A(W)|z—1w| dw.

» Claim: Ci7 < f(z) < Gorr for almost all z € R?

()= [ a2

d
= [ 1a(z+ W)—W (change of variable)

R2 wl
= / / 1a(z + r(cosf,sinf)) drdf  (polar coordinates)
[0,7] /R

= / |AN(z+ Lg)|df (where Ly is the line with angle 0)
[0,7]

€ [Gm, Gorr].
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» f is continuous on R3.
Technical proof ommitted.
Hence Cim < f(z) < Gom everywhere on R2.
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f is harmonic in the upper half-space
H = {(x1,x2,x3) : x3 > 0}.

Essentially because ﬁ is harmonic in R3\ {0}.

v

If Z' is the projection of z € R3 onto R? then
0<f(z) < f(Z) < G

» Harmonic in H, bounded and continuous in H =
is the Poisson mean of f | R? =
G <f(z) < Gm forz € H.
Contradiction: Clearly lim¢— 1 f(x,y,t) = 0.

v



THE END.

Thank you.



