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The classical Steinhaus question

I Steinhaus (1950s): Are there A,B ⊆ R2 such that

|τA ∩ B| = 1, for every rigid motion τ?

Are there two subsets of the plane which, no matter how
moved, always intersect at exactly one point?

Sierpiński, 1958: Yes.

I Equivalent:∑
b∈B

1ρA(x − b) = 1, for all rotations ρ, x ∈ R2.

I In tiling language:

ρA⊕ B = R2, for all rotations ρ.

Every rotation of A tiles (partitions) the plane when
translated at the locations B.
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Fixing B = Z2: the lattice Steinhaus question

I Can we have ρA⊕ Z2 = R2 for all rotations ρ?

I Equivalent: A is a fundamental domain of all ρZ2.
Or, A tiles the plane by translations at any ρZ2.

I Jackson and Mauldin, 2002: Yes.

I Can A be Lebesgue measurable? We interpret tiling almost
everywhere. Results by
Sierpiński (1958), Croft (1982), Beck (1989), K. & Wolff (1999):
If such a measurable A exists then it must be large at infinity:∫

A
|x |

46
27
+ε dx =∞.

I In higher dimension:
K. & Wolff (1999), K. & Papadimitrakis (2002):
=⇒ No measurable Steinhaus sets exist for Zd , d ≥ 3.



3/18

Fixing B = Z2: the lattice Steinhaus question

I Can we have ρA⊕ Z2 = R2 for all rotations ρ?

I Equivalent: A is a fundamental domain of all ρZ2.
Or, A tiles the plane by translations at any ρZ2.

I Jackson and Mauldin, 2002: Yes.

I Can A be Lebesgue measurable? We interpret tiling almost
everywhere. Results by
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The lattice Steinhaus question in Fourier
space

I For f to tile with Z2 its periodization∑
n∈Z2

f (x − n)

must be constant.

I Equivalently f̂ (n) = 0 for all n ∈ Z2 \ {0}.
I Applying to f = 1ρA for all rotations ρ we get

that 1̂A must vanish on all circles through lattice points.
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The lattice Steinhaus question in Fourier
space, cont’d

I Successive circles in the zero set at distance R from the
originat distance R from the origin are about

1/
√
R apart.

I Many zeros =⇒ 1̂A must decay

I Decay of 1̂A =⇒ lack of concentration for 1A, regularity

I In dimension d = 2 this gives
∫
A |x |

46
27
+ε dx =∞.

I In dimension d ≥ 3: better control of circle gap.
We get 1A is continuous (contradiction)
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The lattice Steinhaus question for finitely
many lattices

I Given lattices Λ1, . . . ,Λn ⊆ Rd all of volume 1
can we find measurable A which tiles with all Λj?

I

Generically yes!
If the sum Λ∗1 + · · · + Λ∗n is di-
rect then Kronecker-type den-
sity theorems allow us to rear-
range a fundamental domain of
one lattice to accomodate the
others.
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Restated for the algebraically inclined

I If G is an abelian group and H1, . . . ,Hn subgroups of same
index

can we find a common set of coset representatives for the
Hj?

I Always possible for two subgroups H1,H2 (even in non-abelian
case).

I Fails in general: take G = Z2 × Z2 and the 3 copies of Z2

therein.

I No good condition is known!
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An application in Gabor analysis

I Question: If K , L are two lattices in Rd with

volK · vol L = 1,

can we find g ∈ L2(Rd), such that the (K , L) time-frequency
translates

g(x − k)e2πi`·x , (k ∈ K , ` ∈ L)

form an orthogonal basis?

I Han and Wang (2000): Since vol (L∗) = vol (K ) let g = 1E
where
E is a common tile for K , L∗.

I Then L forms an orthogonal basis for L2(E ).

I The space is partitioned in copies of E and on each copy L is
an orthogonal basis.



8/18

An application in Gabor analysis

I Question: If K , L are two lattices in Rd with

volK · vol L = 1,

can we find g ∈ L2(Rd), such that the (K , L) time-frequency
translates

g(x − k)e2πi`·x , (k ∈ K , ` ∈ L)

form an orthogonal basis?

I Han and Wang (2000): Since vol (L∗) = vol (K ) let g = 1E
where
E is a common tile for K , L∗.

I Then L forms an orthogonal basis for L2(E ).

I The space is partitioned in copies of E and on each copy L is
an orthogonal basis.



8/18

An application in Gabor analysis

I Question: If K , L are two lattices in Rd with

volK · vol L = 1,

can we find g ∈ L2(Rd), such that the (K , L) time-frequency
translates

g(x − k)e2πi`·x , (k ∈ K , ` ∈ L)

form an orthogonal basis?

I Han and Wang (2000): Since vol (L∗) = vol (K ) let g = 1E
where
E is a common tile for K , L∗.

I Then L forms an orthogonal basis for L2(E ).

I The space is partitioned in copies of E and on each copy L is
an orthogonal basis.



8/18

An application in Gabor analysis

I Question: If K , L are two lattices in Rd with

volK · vol L = 1,

can we find g ∈ L2(Rd), such that the (K , L) time-frequency
translates

g(x − k)e2πi`·x , (k ∈ K , ` ∈ L)

form an orthogonal basis?

I Han and Wang (2000): Since vol (L∗) = vol (K ) let g = 1E
where
E is a common tile for K , L∗.

I Then L forms an orthogonal basis for L2(E ).

I The space is partitioned in copies of E and on each copy L is
an orthogonal basis.



9/18

B = Z× {0} or B a finite set

I B = Z× {0}:

The strip tiles with B

x

y

I B is a finite set:

The shaded set tiles with B

x

y
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B = Z× {0} or B a finite set

I Komjáth (1992): There is A ⊆ R2 such that for all rotations ρ

ρA⊕
(
Z× {0}

)
is a tiling.

I For B ⊆ R2 finite and of size 3, 4, 5, 7:
Gao, Miller & Weiss (2007), Xuan (2012),
Henkis, Jackson & Lobe (2014):
=⇒ No such sets A.

We show here

I A Komjáth set cannot be Lebesgue measurable.

I For any finite B ⊆ R2 there is no Lebesgue measurable
Steinhaus set A.
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Finite B: a Fourier condition

Write δB =
∑

b∈B δb.

=⇒ δ̂B(x) =
∑

b∈B e−2πib·x is a trig. polynomial.

I Suppose 1A ∗ δB(x) =
∑

b∈B 1A(x − b) = 1 a.e.(x)

I Taking Fourier Transform:

1̂A · δ̂B = δ0.

I We conclude

supp 1̂A ⊆ {0} ∪
{
δ̂B = 0

}
.

(Notice 1̂A is a tempered distribution.)
I Valid for all rotations ρ:⋃

ρ

ρ
(
supp 1̂A

)
⊆ {0} ∪

{
δ̂B = 0

}
.

=⇒ The zeros of δ̂B contain a circle.
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Zeros of trigonometric polynomials

Theorem
If ψ(x) =

∑
b∈B cbe

2πib·x is a trigonometric polynomial on Rd

which vanishes on a sphere then ψ(x) ≡ 0.

y

xb0b1

b2
b3

b4

b5
Th
e
se
t B

I Enough to prove for d = 2. May assume zeros at unit circle
centered at origin.

I May also assume (b0, 0) ∈ B is unique with maximal modulus.
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Zeros of trigonometric polynomials,
continued

I Write b = bx + iby , for b ∈ B, and z = x − iy , with |z | = 1.
Then (bx , by ) · (x , y) = <(bz) and

ψ(x , y)
∑
b∈B

cbe
2πi<(bz) |z|=1

=
∑
b∈B

cbe
πi(bz+ b

z
) =: g(z)

vanishes at |z | = 1, hence g(z) ≡ 0 for all z 6= 0.

I For real t → +∞ we have

0 = g(−it) = cb0e
πb0t+O(1/t) +

∑
b∈B\{(b0,0)}

cbe
πibt+O(1/t)

Contradiction for:
unique exponential with highest exponent.
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Komjáth sets

y

x

The set B

I Suppose B = {(n, 0) : n ∈ Z} ⊆ R2 and measurable A so that∑
n∈Z

1ρA(x − n, y) = 1, for all rotations ρ and a.e. (x , y).

I =⇒ A has infinite measure.

I Integrating for x ∈ [0, 1] gives that

ρA ∩
(
R× {y}

)
has measure 1 for almost all y ∈ R.

I Hence A intersects almost all lines of the plane at measure 1.
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Komjáth sets: meeting the lines thus is too
much

Theorem
There is no measurable A ⊆ R2 which intersects almost all lines of
the plane in measure (length) at least C1 and at most C2, where
0 < C1,C2 <∞.

I We only need C1 = C2 = 1 for showing there are no
measurable Komjáth sets.



16/18

Line integrals bounded above and below

I Suppose A ⊆ R2 has the bounded line intersection property.
View R2 embedded in R3.

I Define f : R3 → R+ by (convergence is clear)

f (z) =

∫
R2

1A(w)
1

|z − w |
dw .

I Claim: C1π ≤ f (z) ≤ C2π for almost all z ∈ R2

f (z) =

∫
R2

1A(w)
dw

|z − w |

=

∫
R2

1A(z + w)
dw

|w |
(change of variable)

=

∫
[0,π]

∫
R
1A(z + r(cos θ, sin θ)) dr dθ (polar coordinates)

=

∫
[0,π]
|A ∩ (z + Lθ)| dθ (where Lθ is the line with angle θ)

∈ [C1π,C2π].
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View R2 embedded in R3.

I Define f : R3 → R+ by (convergence is clear)

f (z) =

∫
R2

1A(w)
1

|z − w |
dw .

I Claim: C1π ≤ f (z) ≤ C2π for almost all z ∈ R2

f (z) =

∫
R2

1A(w)
dw

|z − w |

=

∫
R2

1A(z + w)
dw

|w |
(change of variable)

=

∫
[0,π]

∫
R
1A(z + r(cos θ, sin θ)) dr dθ (polar coordinates)

=

∫
[0,π]
|A ∩ (z + Lθ)| dθ (where Lθ is the line with angle θ)

∈ [C1π,C2π].
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Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.
I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒
C1π ≤ f (z) ≤ C2π for z ∈ H.

I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



17/18

Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.

I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒
C1π ≤ f (z) ≤ C2π for z ∈ H.

I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



17/18

Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.
I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒
C1π ≤ f (z) ≤ C2π for z ∈ H.

I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



17/18

Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.
I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒
C1π ≤ f (z) ≤ C2π for z ∈ H.

I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



17/18

Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.
I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒

C1π ≤ f (z) ≤ C2π for z ∈ H.

I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



17/18

Line integrals bounded above and below,
continued

I f is continuous on R3.
Technical proof ommitted.

I Hence C1π ≤ f (z) ≤ C2π everywhere on R2.
I f is harmonic in the upper half-space

H = {(x1, x2, x3) : x3 > 0}.

Essentially because 1
|x | is harmonic in R3 \ {0}.

I If z ′ is the projection of z ∈ R3 onto R2 then

0 ≤ f (z) ≤ f (z ′) ≤ C2π.

I Harmonic in H, bounded and continuous in H =⇒
is the Poisson mean of f � R2 =⇒

C1π ≤ f (z) ≤ C2π for z ∈ H.
I Contradiction: Clearly limt→+∞ f (x , y , t) = 0.



18/18

The end.

Thank you.


