STEINHAUS TILING SETS

Mihalis Kolountzakis

University of Crete

Pecs 2017

Joint work with M. Papadimitrakis

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point? Sierpiński, 1958: Yes.

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point? Sierpiński, 1958: Yes.

► Equivalent:

$$\sum_{b\in B}\mathbf{1}_{\rho A}(x-b)=1,\quad \text{for all rotations }\rho\text{, }x\in\mathbb{R}^{2}.$$

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point? Sierpiński, 1958: Yes.

Equivalent:

$$\sum_{b\in B}\mathbf{1}_{\rho A}(x-b)=1,\quad \text{for all rotations }\rho\text{, }x\in\mathbb{R}^2.$$

In tiling language:

$$\rho A \oplus B = \mathbb{R}^2$$
, for all rotations ρ .

Every rotation of A tiles (partitions) the plane when translated at the locations B.

FIXING $B = \mathbb{Z}^2$: THE LATTICE STEINHAUS QUESTION

- ▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?
- ▶ Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.

- ▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?
- ▶ Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.
- ▶ Jackson and Mauldin, 2002: Yes.

- ▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?
- ▶ Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.
- ▶ Jackson and Mauldin, 2002: Yes.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.

- ▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?
- ▶ Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.
- ▶ Jackson and Mauldin, 2002: Yes.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere. Results by Sierpiński (1958), Croft (1982), Beck (1989), K. & Wolff (1999): If such a measurable A exists then it must be large at infinity:

$$\int_{A} |x|^{\frac{46}{27} + \epsilon} dx = \infty.$$

- ▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?
- ▶ Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.
- Jackson and Mauldin, 2002: Yes.
- Can A be Lebesgue measurable? We interpret tiling almost everywhere. Results by Sierpiński (1958), Croft (1982), Beck (1989), K. & Wolff (1999): If such a measurable A exists then it must be large at infinity:

$$\int_{A} |x|^{\frac{46}{27} + \epsilon} \, dx = \infty.$$

In higher dimension:
 K. & Wolff (1999), K. & Papadimitrakis (2002):
 ⇒ No measurable Steinhaus sets exist for Z^d, d ≥ 3.

▶ For f to tile with \mathbb{Z}^2 its periodization

$$\sum_{n\in\mathbb{Z}^2} f(x-n)$$

must be constant.

▶ For f to tile with \mathbb{Z}^2 its periodization

$$\sum_{n\in\mathbb{Z}^2} f(x-n)$$

must be constant.

▶ Equivalently $\widehat{f}(n) = 0$ for all $n \in \mathbb{Z}^2 \setminus \{0\}$.

▶ For f to tile with \mathbb{Z}^2 its periodization

$$\sum_{n\in\mathbb{Z}^2}f(x-n)$$

must be constant.

- ▶ Equivalently $\widehat{f}(n) = 0$ for all $n \in \mathbb{Z}^2 \setminus \{0\}$.
- Applying to $f=\mathbf{1}_{
 ho A}$ for all rotations ho we get

that $\hat{\mathbf{1}}_A$ must vanish on all circles through lattice points.

► Successive circles in the zero set at distance *R* from the originat distance *R* from the origin are about

$$1/\sqrt{R}$$
 apart.

► Successive circles in the zero set at distance *R* from the originat distance *R* from the origin are about

$$1/\sqrt{R}$$
 apart.

 $lackbox{\sf Many zeros} \Longrightarrow \widehat{\mathbf{1}_{\mathcal{A}}}$ must decay

► Successive circles in the zero set at distance *R* from the originat distance *R* from the origin are about

$$1/\sqrt{R}$$
 apart.

- lacktriangle Many zeros $\Longrightarrow \widehat{\mathbf{1}_{\mathcal{A}}}$ must decay
- lacktriangle Decay of $\widehat{\mathbf{1}_A}\Longrightarrow$ lack of concentration for $\mathbf{1}_A$, regularity

Successive circles in the zero set at distance R from the originat distance R from the origin are about

$$1/\sqrt{R}$$
 apart.

- lacktriangle Many zeros $\Longrightarrow \widehat{\mathbf{1}_{\mathcal{A}}}$ must decay
- lacktriangle Decay of $\widehat{\mathbf{1}_A}\Longrightarrow$ lack of concentration for $\mathbf{1}_A$, regularity
- ▶ In dimension d=2 this gives $\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty$.

► Successive circles in the zero set at distance *R* from the originat distance *R* from the origin are about

$$1/\sqrt{R}$$
 apart.

- lacktriangle Many zeros $\Longrightarrow \widehat{\mathbf{1}_{\mathcal{A}}}$ must decay
- lacktriangle Decay of $\widehat{\mathbf{1}_A}\Longrightarrow$ lack of concentration for $\mathbf{1}_A$, regularity
- ▶ In dimension d=2 this gives $\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty$.
- ▶ In dimension $d \ge 3$: better control of circle gap. We get $\mathbf{1}_A$ is continuous (contradiction)

THE LATTICE STEINHAUS QUESTION FOR FINITELY MANY LATTICES

▶ Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j ?

THE LATTICE STEINHAUS QUESTION FOR FINITELY MANY LATTICES

▶ Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j ?

Generically yes! If the sum $\Lambda_1^* + \cdots + \Lambda_n^*$ is direct then Kronecker-type density theorems allow us to rearrange a fundamental domain of one lattice to accomodate the others.

▶ If G is an abelian group and H_1, \ldots, H_n subgroups of same index

- If G is an abelian group and H₁,..., Hn subgroups of same index
 same set of second representatives for the
 - can we find a **common set of coset representatives** for the H_j ?

- If G is an abelian group and H₁,..., H_n subgroups of same index can we find a common set of coset representatives for the H_i?
- ▶ Always possible for two subgroups H_1 , H_2 (even in non-abelian case).

- If G is an abelian group and H₁,..., Hn subgroups of same index can we find a common set of coset representatives for the H₁?
- ▶ Always possible for two subgroups H_1 , H_2 (even in non-abelian case).
- ▶ Fails in general: take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and the 3 copies of \mathbb{Z}_2 therein.

- If G is an abelian group and H₁,..., H_n subgroups of same index can we find a common set of coset representatives for the H_i?
- ▶ Always possible for two subgroups H_1 , H_2 (even in non-abelian case).
- ▶ Fails in general: take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and the 3 copies of \mathbb{Z}_2 therein.
- No good condition is known!

An application in Gabor analysis

Question: If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1,$$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis?

AN APPLICATION IN GABOR ANALYSIS

▶ **Question:** If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1$$
,

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis?

▶ Han and Wang (2000): Since $vol(L^*) = vol(K)$ let $g = \mathbf{1}_E$ where

E is a common tile for K, L^* .

AN APPLICATION IN GABOR ANALYSIS

▶ **Question:** If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1$$
,

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis?

- ▶ Han and Wang (2000): Since $vol(L^*) = vol(K)$ let $g = \mathbf{1}_E$ where
 - E is a common tile for K, L^* .
- ▶ Then *L* forms an orthogonal basis for $L^2(E)$.

AN APPLICATION IN GABOR ANALYSIS

▶ **Question:** If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1$$
,

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis?

- ▶ Han and Wang (2000): Since $vol(L^*) = vol(K)$ let $g = \mathbf{1}_E$ where
 - E is a common tile for K, L^* .
- ▶ Then L forms an orthogonal basis for $L^2(E)$.
- ▶ The space is partitioned in copies of *E* and on each copy *L* is an orthogonal basis.

$$B=\mathbb{Z} \times \{0\}$$
 or B a finite set

▶ $B = \mathbb{Z} \times \{0\}$:

 $\blacktriangleright B = \mathbb{Z} \times \{0\}:$

▶ *B* is a finite set:

The shaded set tiles with B

▶ Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ $\rho A \oplus \left(\mathbb{Z} \times \{0\}\right) \quad \text{is a tiling}.$

▶ Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ $\rho A \oplus \left(\mathbb{Z} \times \{0\}\right) \quad \text{is a tiling}.$

For $B \subseteq \mathbb{R}^2$ finite and of size 3, 4, 5, 7: Gao, Miller & Weiss (2007), Xuan (2012), Henkis, Jackson & Lobe (2014): \implies No such sets A.

▶ Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ $\rho A \oplus \left(\mathbb{Z} \times \{0\}\right) \quad \text{is a tiling}.$

► For $B \subseteq \mathbb{R}^2$ finite and of size 3, 4, 5, 7: Gao, Miller & Weiss (2007), Xuan (2012), Henkis, Jackson & Lobe (2014): ⇒ No such sets A.

WE SHOW HERE

► A Komjáth set cannot be Lebesgue measurable.

▶ Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ $\rho A \oplus \left(\mathbb{Z} \times \{0\}\right) \quad \text{is a tiling}.$

▶ For $B \subseteq \mathbb{R}^2$ finite and of size 3, 4, 5, 7: Gao, Miller & Weiss (2007), Xuan (2012), Henkis, Jackson & Lobe (2014): ⇒ No such sets A.

WE SHOW HERE

- A Komjáth set cannot be Lebesgue measurable.
- For any finite $B \subseteq \mathbb{R}^2$ there is no Lebesgue measurable Steinhaus set A.

FINITE B: A FOURIER CONDITION

Write
$$\delta_B = \sum_{b \in B} \delta_b$$
.
 $\Longrightarrow \widehat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$ is a trig. polynomial.
• Suppose $\mathbf{1}_A * \delta_B(x) = \sum_{b \in B} \mathbf{1}_A(x - b) = 1$ a.e. (x)

FINITE B: A FOURIER CONDITION

Write $\delta_B = \sum_{b \in B} \delta_b$. $\Longrightarrow \widehat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$ is a trig. polynomial.

- ► Suppose $\mathbf{1}_{A} * \delta_{B}(x) = \sum_{b \in B} \mathbf{1}_{A}(x b) = 1$ a.e.(x)
- ► Taking Fourier Transform:

$$\widehat{\mathbf{1}_A}\cdot\widehat{\delta_B}=\delta_0.$$

FINITE B: A FOURIER CONDITION

Write $\delta_B = \sum_{b \in B} \delta_b$. $\Longrightarrow \widehat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$ is a trig. polynomial.

- ► Suppose $\mathbf{1}_{A} * \delta_{B}(x) = \sum_{b \in B} \mathbf{1}_{A}(x b) = 1$ a.e.(x)
- ► Taking Fourier Transform:

$$\widehat{\mathbf{1}_A}\cdot\widehat{\delta_B}=\delta_0.$$

▶ We conclude

$$\operatorname{supp} \widehat{\mathbf{1}_A} \subseteq \{0\} \cup \Big\{\widehat{\delta_B} = 0\Big\}.$$

(Notice $\hat{\mathbf{1}}_A$ is a tempered distribution.)

FINITE B: A FOURIER CONDITION

Write $\delta_B = \sum_{b \in B} \delta_b$.

$$\Longrightarrow \widehat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$$
 is a trig. polynomial.

- ► Suppose $\mathbf{1}_{A} * \delta_{B}(x) = \sum_{b \in B} \mathbf{1}_{A}(x b) = 1$ a.e.(x)
- ► Taking Fourier Transform:

$$\widehat{\mathbf{1}_A}\cdot\widehat{\delta_B}=\delta_0.$$

▶ We conclude

$$\operatorname{supp} \widehat{\mathbf{1}_A} \subseteq \{0\} \cup \Big\{ \widehat{\delta_B} = 0 \Big\}.$$

(Notice $\widehat{\mathbf{1}_A}$ is a tempered distribution.)

Valid for all rotations ρ:

$$\bigcup_{\Omega} \rho \left(\operatorname{supp} \widehat{\mathbf{1}_A} \right) \subseteq \{0\} \cup \left\{ \widehat{\delta_B} = 0 \right\}.$$

 \Longrightarrow The zeros of $\widehat{\delta_B}$ contain a *circle*.

ZEROS OF TRIGONOMETRIC POLYNOMIALS

THEOREM

If $\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x}$ is a trigonometric polynomial on \mathbb{R}^d which vanishes on a sphere then $\psi(x) \equiv 0$.

ZEROS OF TRIGONOMETRIC POLYNOMIALS

THEOREM

If $\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x}$ is a trigonometric polynomial on \mathbb{R}^d which vanishes on a sphere then $\psi(x) \equiv 0$.

▶ Enough to prove for d = 2. May assume zeros at unit circle centered at origin.

ZEROS OF TRIGONOMETRIC POLYNOMIALS

THEOREM

If $\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x}$ is a trigonometric polynomial on \mathbb{R}^d which vanishes on a sphere then $\psi(x) \equiv 0$.

- ▶ Enough to prove for d = 2. May assume zeros at unit circle centered at origin.
- ▶ May also assume $(b_0, 0) \in B$ is unique with maximal modulus.

ZEROS OF TRIGONOMETRIC POLYNOMIALS, CONTINUED

▶ Write $b = b_x + ib_y$, for $b \in B$, and z = x - iy, with |z| = 1. Then $(b_x, b_y) \cdot (x, y) = \Re(bz)$ and

$$\psi(x,y)\sum_{b\in B}c_be^{2\pi i\Re(bz)}\stackrel{|z|=1}{=}\sum_{b\in B}c_be^{\pi i(bz+\frac{\overline{b}}{z})}=:g(z)$$

vanishes at |z| = 1, hence $g(z) \equiv 0$ for all $z \neq 0$.

ZEROS OF TRIGONOMETRIC POLYNOMIALS, CONTINUED

Write $b = b_x + ib_y$, for $b \in B$, and z = x - iy, with |z| = 1. Then $(b_x, b_y) \cdot (x, y) = \Re(bz)$ and

$$\psi(x,y)\sum_{b\in B}c_be^{2\pi i\Re(bz)}\stackrel{|z|=1}{=}\sum_{b\in B}c_be^{\pi i(bz+\frac{\overline{b}}{z})}=:g(z)$$

vanishes at |z| = 1, hence $g(z) \equiv 0$ for all $z \neq 0$.

▶ For real $t \to +\infty$ we have

$$0 = g(-it) = c_{b_0} e^{\pi b_0 t + O(1/t)} + \sum_{b \in B \setminus \{(b_0, 0)\}} c_b e^{\pi i b t + O(1/t)}$$

Contradiction for: unique exponential with highest exponent.

Komjáth sets

▶ Suppose $B = \{(n,0) : n \in \mathbb{Z}\} \subseteq \mathbb{R}^2$ and measurable A so that

$$\sum_{n\in\mathbb{Z}}\mathbf{1}_{\rho\mathsf{A}}(x-n,y)=1,\quad\text{for all rotations }\rho\text{ and a.e. }(x,y).$$

Komjáth sets

- Suppose $B=\{(n,0):n\in\mathbb{Z}\}\subseteq\mathbb{R}^2$ and measurable A so that $\sum_{n\in\mathbb{Z}}\mathbf{1}_{\rho A}(x-n,y)=1,\quad \text{for all rotations }\rho \text{ and a.e. }(x,y).$
- $ightharpoonup \implies A$ has infinite measure.

Komjáth sets

- Suppose $B = \{(n,0) : n \in \mathbb{Z}\} \subseteq \mathbb{R}^2$ and measurable A so that $\sum \mathbf{1}_{AA}(x-n,y) = 1$ for all rotations a and $a \in (x,y)$
 - $\sum_{n\in\mathbb{Z}}\mathbf{1}_{
 ho\mathcal{A}}(x-n,y)=1,\quad ext{for all rotations }
 ho ext{ and a.e. }(x,y).$
- $ightharpoonup \implies A$ has infinite measure.
- ▶ Integrating for $x \in [0,1]$ gives that

$$\rho A \cap (\mathbb{R} \times \{y\})$$
 has measure 1 for almost all $y \in \mathbb{R}$.

▶ Hence A intersects almost all lines of the plane at measure 1.

Komjáth sets: meeting the lines thus is too much

THEOREM

There is no measurable $A \subseteq \mathbb{R}^2$ which intersects almost all lines of the plane in measure (length) at least C_1 and at most C_2 , where $0 < C_1, C_2 < \infty$.

▶ We only need $C_1 = C_2 = 1$ for showing there are no measurable Komjáth sets.

LINE INTEGRALS BOUNDED ABOVE AND BELOW

- ▶ Suppose $A \subseteq \mathbb{R}^2$ has the bounded line intersection property. View \mathbb{R}^2 embedded in \mathbb{R}^3 .
- ▶ Define $f: \mathbb{R}^3 \to \mathbb{R}^+$ by (convergence is clear)

$$f(z) = \int_{\mathbb{R}^2} \mathbf{1}_A(w) \frac{1}{|z-w|} dw.$$

LINE INTEGRALS BOUNDED ABOVE AND BELOW

- ▶ Suppose $A \subseteq \mathbb{R}^2$ has the bounded line intersection property. View \mathbb{R}^2 embedded in \mathbb{R}^3 .
- ▶ Define $f: \mathbb{R}^3 \to \mathbb{R}^+$ by (convergence is clear)

$$f(z) = \int_{\mathbb{R}^2} \mathbf{1}_A(w) \frac{1}{|z-w|} dw.$$

▶ Claim: $C_1\pi \le f(z) \le C_2\pi$ for almost all $z \in \mathbb{R}^2$

$$f(z) = \int_{\mathbb{R}^2} \mathbf{1}_A(w) \frac{dw}{|z - w|}$$

$$= \int_{\mathbb{R}^2} \mathbf{1}_A(z + w) \frac{dw}{|w|} \quad \text{(change of variable)}$$

$$= \int_{[0,\pi]} \int_{\mathbb{R}} \mathbf{1}_A(z + r(\cos\theta, \sin\theta)) \, dr \, d\theta \quad \text{(polar coordinates)}$$

$$= \int_{[0,\pi]} |A \cap (z + L_\theta)| \, d\theta \quad \text{(where } L_\theta \text{ is the line with angle } \theta\text{)}$$

$$\in [C_1\pi, C_2\pi].$$

• f is continuous on \mathbb{R}^3 . Technical proof ommitted.

- f is continuous on \mathbb{R}^3 . Technical proof ommitted.
- ▶ Hence $C_1\pi \le f(z) \le C_2\pi$ everywhere on \mathbb{R}^2 .

- ► f is continuous on R³.

 Technical proof ommitted.
- ▶ Hence $C_1\pi \le f(z) \le C_2\pi$ everywhere on \mathbb{R}^2 .
- ▶ f is harmonic in the upper half-space

$$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.

- ► f is continuous on R³.

 Technical proof ommitted.
- ▶ Hence $C_1\pi \le f(z) \le C_2\pi$ everywhere on \mathbb{R}^2 .
- f is harmonic in the upper half-space

$$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.

▶ If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

$$0 \leq f(z) \leq f(z') \leq C_2 \pi.$$

- ► f is continuous on R³.

 Technical proof ommitted.
- ▶ Hence $C_1\pi \le f(z) \le C_2\pi$ everywhere on \mathbb{R}^2 .
- f is harmonic in the upper half-space

$$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.

▶ If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

$$0 \leq f(z) \leq f(z') \leq C_2 \pi.$$

▶ Harmonic in H, bounded and continuous in \overline{H} \Longrightarrow is the Poisson mean of $f \upharpoonright \mathbb{R}^2 \Longrightarrow$ $C_1\pi \le f(z) \le C_2\pi$ for $z \in H$.

- f is continuous on \mathbb{R}^3 . Technical proof ommitted.
- ▶ Hence $C_1\pi \le f(z) \le C_2\pi$ everywhere on \mathbb{R}^2 .
- ▶ f is harmonic in the upper half-space

$$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.

▶ If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

$$0 \leq f(z) \leq f(z') \leq C_2 \pi.$$

- ▶ Harmonic in H, bounded and continuous in \overline{H} \Longrightarrow is the Poisson mean of $f \upharpoonright \mathbb{R}^2 \Longrightarrow$ $C_1\pi \le f(z) \le C_2\pi$ for $z \in H$.
- ▶ Contradiction: Clearly $\lim_{t\to +\infty} f(x, y, t) = 0$.

THE END.

Thank you.