STEINHAUS TILING SETS

Mihalis Kolountzakis

University of Crete

Pecs 2017

Joint work with M. Papadimitrakis
The classical Steinhaus question

> Steinhaus (1950s): Are there \(A, B \subseteq \mathbb{R}^2 \) such that

\[
|\tau A \cap B| = 1, \text{ for every rigid motion } \tau.
\]

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?
The classical Steinhaus question

- Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1, \quad \text{for every rigid motion } \tau?$$

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?
Sierpiński, 1958: Yes.
The classical Steinhaus question

- Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

\[|\tau A \cap B| = 1, \quad \text{for every rigid motion } \tau? \]

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?
Sierpiński, 1958: Yes.

- Equivalent:

\[\sum_{b \in B} 1_{\rho A}(x - b) = 1, \quad \text{for all rotations } \rho, \ x \in \mathbb{R}^2. \]
The classical Steinhaus question

- Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1, \quad \text{for every rigid motion } \tau?$$

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?
Sierpiński, 1958: Yes.

- Equivalent:

$$\sum_{b \in B} 1_{\rho A}(x - b) = 1, \quad \text{for all rotations } \rho, \ x \in \mathbb{R}^2.$$

- In tiling language:

$$\rho A \oplus B = \mathbb{R}^2, \quad \text{for all rotations } \rho.$$

Every rotation of A tiles (partitions) the plane when translated at the locations B.

Fixing \(B = \mathbb{Z}^2 \): the lattice Steinhaus question

- Can we have \(\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2 \) for all rotations \(\rho \)?

- Equivalent: \(A \) is a fundamental domain of all \(\rho \mathbb{Z}^2 \). Or, \(A \) tiles the plane by translations at any \(\rho \mathbb{Z}^2 \).
Fixing $B = \mathbb{Z}^2$: the lattice Steinhaus question

- Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ?
- Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.
- Jackson and Mauldin, 2002: Yes.

- Can A be Lebesgue measurable? We interpret tiling almost everywhere.
 - If such a measurable A exists then it must be large at infinity:
 \[\int_{\mathbb{R}^2} |x|^{46/27 + \epsilon} \, dx = \infty. \]
 - No measurable Steinhaus sets exist for \mathbb{Z}^d, $d \geq 3$.

Fixing $B = \mathbb{Z}^2$: the lattice Steinhaus question

- Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ?
- Equivalent: A is a fundamental domain of all $\rho\mathbb{Z}^2$.
 Or, A tiles the plane by translations at any $\rho\mathbb{Z}^2$.
- Jackson and Mauldin, 2002: Yes.
- Can A be Lebesgue measurable? We interpret tiling almost everywhere.
Fixing \(B = \mathbb{Z}^2 \): the lattice Steinhaus question

- Can we have \(\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2 \) for all rotations \(\rho \)?
- Equivalent: \(A \) is a fundamental domain of all \(\rho \mathbb{Z}^2 \).
 Or, \(A \) tiles the plane by translations at any \(\rho \mathbb{Z}^2 \).
- Jackson and Mauldin, 2002: Yes.
 If such a measurable \(A \) exists then it must be large at infinity:

\[
\int_A |x|^{\frac{46}{27} + \epsilon} \, dx = \infty.
\]
Fixing \(B = \mathbb{Z}^2 \): the lattice Steinhaus question

\begin{itemize}
 \item Can we have \(\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2 \) for all rotations \(\rho \)?
 \item Equivalent: \(A \) is a fundamental domain of all \(\rho \mathbb{Z}^2 \).
 Or, \(A \) tiles the plane by translations at any \(\rho \mathbb{Z}^2 \).
 \item Jackson and Mauldin, 2002: Yes.
 \item Can \(A \) be Lebesgue measurable? We interpret tiling almost everywhere. Results by Sierpiński (1958), Croft (1982), Beck (1989), K. & Wolff (1999):
 If such a measurable \(A \) exists then it must be large at infinity:
 \[
 \int_{A} |x|^{\frac{46}{27} + \epsilon} \, dx = \infty.
 \]
 \item In higher dimension:
 \(\implies \) No measurable Steinhaus sets exist for \(\mathbb{Z}^d \), \(d \geq 3 \).
\end{itemize}
The lattice Steinhaus question in Fourier space

- For f to tile with \mathbb{Z}^2 its periodization

$$\sum_{n \in \mathbb{Z}^2} f(x - n)$$

must be constant.
The lattice Steinhaus question in Fourier space

- For f to tile with \mathbb{Z}^2 its periodization
 \[\sum_{n \in \mathbb{Z}^2} f(x - n) \]
 must be constant.
- Equivalently $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}^2 \setminus \{0\}$.
The lattice Steinhaus question in Fourier space

- For f to tile with \mathbb{Z}^2 its periodization
 \[
 \sum_{n \in \mathbb{Z}^2} f(x - n)
 \]
 must be constant.
- Equivalently $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}^2 \setminus \{0\}$.
- Applying to $f = 1_{\rho A}$ for all rotations ρ we get that $\hat{1}_A$ must vanish on all circles through lattice points.
Successive circles in the zero set at distance R from the origin at distance R from the origin are about $\frac{1}{\sqrt{R}}$ apart.
Successive circles in the zero set at distance R from the origin are about $1/\sqrt{R}$ apart.

Many zeros $\Rightarrow \hat{1}_A$ must decay.
Successive circles in the zero set at distance R from the origin are about $1/\sqrt{R}$ apart.

Many zeros $\implies \hat{1}_A$ must decay

Decay of $\hat{1}_A$ \implies lack of concentration for 1_A, regularity
Successive circles in the zero set at distance R from the origin are about $1/\sqrt{R}$ apart.

Many zeros $\implies \hat{1}_A$ must decay

Decay of $\hat{1}_A \implies$ lack of concentration for 1_A, regularity

In dimension $d = 2$ this gives $\int_A |x|^{46/27 + \epsilon} \, dx = \infty$.

In dimension $d \geq 3$: better control of circle gap. We get 1_A is continuous (contradiction)
Successive circles in the zero set at distance R from the origin at distance R from the origin are about $1/\sqrt{R}$ apart.

Many zeros $\Rightarrow \hat{1}_A$ must decay

Decay of $\hat{1}_A$ \Rightarrow lack of concentration for 1_A, regularity

In dimension $d = 2$ this gives $\int_A |x|^{46/27 + \epsilon} \, dx = \infty$.

In dimension $d \geq 3$: better control of circle gap. We get 1_A is continuous (contradiction)
The lattice Steinhaus question for finitely many lattices

Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j?
Given lattices \(\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d \) all of volume 1 can we find measurable \(A \) which tiles with all \(\Lambda_j \)?

Generically yes!
If the sum \(\Lambda_1^* + \cdots + \Lambda_n^* \) is direct then Kronecker-type density theorems allow us to rearrange a fundamental domain of one lattice to accommodate the others.
If G is an abelian group and H_1, \ldots, H_n subgroups of same index.

- Always possible for two subgroups H_1, H_2 (even in non-abelian case).
- Fails in general: take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and the 3 copies of \mathbb{Z}_2 therein.
- No good condition is known!
If G is an abelian group and H_1, \ldots, H_n subgroups of same index, can we find a common set of coset representatives for the H_j?
If G is an abelian group and H_1, \ldots, H_n subgroups of same index, can we find a **common set of coset representatives** for the H_j?

Always possible for two subgroups H_1, H_2 (even in non-abelian case).
If G is an abelian group and H_1, \ldots, H_n subgroups of same index can we find a **common set of coset representatives** for the H_j?

Always possible for two subgroups H_1, H_2 (even in non-abelian case).

Fails in general: take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and the 3 copies of \mathbb{Z}_2 therein.
If G is an abelian group and H_1, \ldots, H_n subgroups of same index
can we find a **common set of coset representatives** for the H_j?

Always possible for two subgroups H_1, H_2 (even in non-abelian case).

Fails in general: take $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and the 3 copies of \mathbb{Z}_2 therein.

No good condition is known!
Question: If K, L are two lattices in \mathbb{R}^d with

$$\text{vol } K \cdot \text{vol } L = 1,$$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x - k)e^{2\pi i \ell \cdot x}, \quad (k \in K, \ell \in L)$$

form an orthogonal basis?
Question: If K, L are two lattices in \mathbb{R}^d with
\[\text{vol} \, K \cdot \text{vol} \, L = 1, \]
can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates
\[g(x - k)e^{2\pi i \ell \cdot x}, \quad (k \in K, \ell \in L) \]
form an orthogonal basis?

Han and Wang (2000): Since $\text{vol}(L^*) = \text{vol}(K)$ let $g = 1_E$
where E is a common tile for K, L^*.
Question: If K, L are two lattices in \mathbb{R}^d with

$$\text{vol } K \cdot \text{vol } L = 1,$$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x - k)e^{2\pi i \ell \cdot x}, \quad (k \in K, \ell \in L)$$

form an orthogonal basis?

Han and Wang (2000): Since $\text{vol } (L^*) = \text{vol } (K)$ let $g = 1_E$ where

E is a common tile for K, L^*.

Then L forms an orthogonal basis for $L^2(E)$.
Question: If K, L are two lattices in \mathbb{R}^d with \[\text{vol } K \cdot \text{vol } L = 1, \]
can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates
\[g(x - k)e^{2\pi i \ell \cdot x}, \quad (k \in K, \ell \in L) \]
form an orthogonal basis?

Han and Wang (2000): Since $\text{vol}(L^*) = \text{vol}(K)$ let $g = 1_E$ where E is a common tile for K, L^*.

Then L forms an orthogonal basis for $L^2(E)$.

The space is partitioned in copies of E and on each copy L is an orthogonal basis.
$B = \mathbb{Z} \times \{0\}$ OR B A FINITE SET

- $B = \mathbb{Z} \times \{0\}$:

 The strip tiles with B
$B = \mathbb{Z} \times \{0\}$ OR B A FINITE SET

- $B = \mathbb{Z} \times \{0\}$:

The strip tiles with B

- B is a finite set:

The shaded set tiles with B
\(B = \mathbb{Z} \times \{0\} \text{ OR } B \text{ A FINITE SET} \)

- Komjáth (1992): There is \(A \subseteq \mathbb{R}^2 \) such that for all rotations \(\rho \)

\[
\rho A \oplus (\mathbb{Z} \times \{0\}) \text{ is a tiling.}
\]
$B = \mathbb{Z} \times \{0\}$ OR B A FINITE SET

- Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ

 $$\rho A \oplus (\mathbb{Z} \times \{0\})$$

 is a tiling.

- For $B \subseteq \mathbb{R}^2$ finite and of size 3, 4, 5, 7:

 \implies No such sets A.

$B = \mathbb{Z} \times \{0\}$ OR B A FINITE SET

- Komjáth (1992): There is $A \subseteq \mathbb{R}^2$ such that for all rotations ρ

 $$\rho A \oplus (\mathbb{Z} \times \{0\})$$

 is a tiling.

- For $B \subseteq \mathbb{R}^2$ finite and of size 3, 4, 5, 7:

 Gao, Miller & Weiss (2007), Xuan (2012),
 Henkis, Jackson & Lobe (2014):

 \implies No such sets A.

WE SHOW HERE

- A Komjáth set cannot be Lebesgue measurable.
\(B = \mathbb{Z} \times \{0\} \) OR \(B \) A FINITE SET

- Komjáth (1992): There is \(A \subseteq \mathbb{R}^2 \) such that for all rotations \(\rho \)
 \[\rho A \oplus (\mathbb{Z} \times \{0\}) \] is a tiling.

- For \(B \subseteq \mathbb{R}^2 \) finite and of size 3, 4, 5, 7: Gao, Miller & Weiss (2007), Xuan (2012), Henkis, Jackson & Lobe (2014):
 \[\implies \text{No such sets } A. \]

WE SHOW HERE

- A Komjáth set cannot be Lebesgue measurable.
- For any finite \(B \subseteq \mathbb{R}^2 \) there is no Lebesgue measurable Steinhaus set \(A \).
\textbf{Finite \textit{B}: a Fourier condition}

Write $\delta_B = \sum_{b \in B} \delta_b$.

$\Rightarrow \hat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$ is a trig. polynomial.

\begin{itemize}
 \item Suppose $1_A \ast \delta_B(x) = \sum_{b \in B} 1_A(x - b) = 1 \text{ a.e.}(x)$
\end{itemize}
Finite B: a Fourier condition

Write $\delta_B = \sum_{b \in B} \delta_b$.

$\implies \widehat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi ib \cdot x}$ is a trig. polynomial.

- Suppose $1_A * \delta_B(x) = \sum_{b \in B} 1_A(x - b) = 1$ a.e.(x)
- Taking Fourier Transform:

 $$\widehat{1_A} \cdot \widehat{\delta_B} = \delta_0.$$
Finite B: a Fourier condition

Write $\delta_B = \sum_{b \in B} \delta_b$.

$$\implies \hat{\delta_B}(x) = \sum_{b \in B} e^{-2\pi ib \cdot x}$$ is a trig. polynomial.

- Suppose $1_A * \delta_B(x) = \sum_{b \in B} 1_A(x - b) = 1$ a.e.(x)
- Taking Fourier Transform:
 $$\hat{1_A} \cdot \hat{\delta_B} = \delta_0.$$

- We conclude
 $$\text{supp} \hat{1_A} \subseteq \{0\} \cup \{\hat{\delta_B} = 0\}.$$

(Notice $\hat{1_A}$ is a *tempered distribution*.)
Write $\delta_B = \sum_{b \in B} \delta_b$.

$\implies \hat{\delta}_B(x) = \sum_{b \in B} e^{-2\pi i b \cdot x}$ is a trig. polynomial.

- Suppose $1_A \ast \delta_B(x) = \sum_{b \in B} 1_A(x - b) = 1$ a.e.(x)
- Taking Fourier Transform:

$$\hat{1}_A \cdot \hat{\delta}_B = \delta_0.$$

- We conclude

$$\text{supp } \hat{1}_A \subseteq \{0\} \cup \{\hat{\delta}_B = 0\}.$$

(Notice $\hat{1}_A$ is a \textit{tempered distribution}.)

- Valid for all rotations ρ:

$$\bigcup_{\rho} \rho \left(\text{supp } \hat{1}_A \right) \subseteq \{0\} \cup \{\hat{\delta}_B = 0\}.$$

\implies The zeros of $\hat{\delta}_B$ contain a \textit{circle}.
Zeros of trigonometric polynomials

Theorem

If \(\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x} \) is a trigonometric polynomial on \(\mathbb{R}^d \) which vanishes on a sphere then \(\psi(x) \equiv 0 \).
THEOREM

If \(\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x} \) is a trigonometric polynomial on \(\mathbb{R}^d \) which vanishes on a sphere then \(\psi(x) \equiv 0 \).

▶ Enough to prove for \(d = 2 \). May assume zeros at unit circle centered at origin.
THEOREM

If \(\psi(x) = \sum_{b \in B} c_b e^{2\pi i b \cdot x} \) is a trigonometric polynomial on \(\mathbb{R}^d \) which vanishes on a sphere then \(\psi(x) \equiv 0 \).

- Enough to prove for \(d = 2 \). May assume zeros at unit circle centered at origin.
- May also assume \((b_0, 0) \in B \) is unique with maximal modulus.
Write $b = b_x + ib_y$, for $b \in B$, and $z = x - iy$, with $|z| = 1$. Then $(b_x, b_y) \cdot (x, y) = \Re(bz)$ and

$$\psi(x, y) \sum_{b \in B} c_b e^{2\pi i \Re(bz)} |z|=1 \sum_{b \in B} c_b e^{\pi i (bz + \frac{b}{z})} =: g(z)$$

vanishes at $|z| = 1$, hence $g(z) \equiv 0$ for all $z \neq 0$.
Write $b = b_x + ib_y$, for $b \in B$, and $z = x - iy$, with $|z| = 1$. Then $(b_x, b_y) \cdot (x, y) = \Re(bz)$ and

$$
\psi(x, y) \sum_{b \in B} c_b e^{2\pi i \Re(bz)} \big|z\big| = 1 \sum_{b \in B} c_b e^{\pi i (bz + \overline{b}/z)} =: g(z)
$$

vanishes at $|z| = 1$, hence $g(z) \equiv 0$ for all $z \neq 0$.

For real $t \to +\infty$ we have

$$
0 = g(-it) = c_{b_0} e^{\pi b_0 t + O(1/t)} + \sum_{b \in B \setminus \{(b_0,0)\}} c_b e^{\pi ibt + O(1/t)}
$$

Contradiction for:

unique exponential with highest exponent.
Suppose $B = \{(n, 0) : n \in \mathbb{Z}\} \subseteq \mathbb{R}^2$ and measurable A so that

$$\sum_{n \in \mathbb{Z}} 1_{\rho A}(x - n, y) = 1,$$

for all rotations ρ and a.e. (x, y).

The set B
Suppose $B = \{(n, 0) : n \in \mathbb{Z}\} \subseteq \mathbb{R}^2$ and measurable A so that

$$\sum_{n \in \mathbb{Z}} 1_{\rho A}(x - n, y) = 1,$$

for all rotations ρ and a.e. (x, y).

$\implies A$ has infinite measure.
Komjáth sets

The set B

- Suppose $B = \{(n, 0) : n \in \mathbb{Z}\} \subseteq \mathbb{R}^2$ and measurable A so that

$$\sum_{n \in \mathbb{Z}} 1_{\rho A}(x - n, y) = 1,$$

for all rotations ρ and a.e. (x, y).

- $\implies A$ has infinite measure.

- Integrating for $x \in [0, 1]$ gives that

$$\rho A \cap (\mathbb{R} \times \{y\})$$

has measure 1 for almost all $y \in \mathbb{R}$.

- Hence A intersects almost all lines of the plane at measure 1.
Komjáth sets: meeting the lines thus is too much

Theorem

There is no measurable $A \subseteq \mathbb{R}^2$ *which intersects almost all lines of the plane in measure (length) at least* C_1 *and at most* C_2, *where* $0 < C_1, C_2 < \infty$.

- We only need $C_1 = C_2 = 1$ for showing there are no measurable Komjáth sets.
Suppose $A \subseteq \mathbb{R}^2$ has the bounded line intersection property. View \mathbb{R}^2 embedded in \mathbb{R}^3.

Define $f : \mathbb{R}^3 \to \mathbb{R}^+$ by (convergence is clear)

$$f(z) = \int_{\mathbb{R}^2} 1_A(w) \frac{1}{|z - w|} \, dw.$$
Suppose $A \subseteq \mathbb{R}^2$ has the bounded line intersection property. View \mathbb{R}^2 embedded in \mathbb{R}^3.

Define $f : \mathbb{R}^3 \to \mathbb{R}^+$ by (convergence is clear)

$$f(z) = \int_{\mathbb{R}^2} \mathbf{1}_A(w) \frac{1}{|z - w|} \, dw.$$

Claim: $C_1 \pi \leq f(z) \leq C_2 \pi$ for almost all $z \in \mathbb{R}^2$

$$f(z) = \int_{\mathbb{R}^2} \mathbf{1}_A(w) \frac{dw}{|z - w|}$$

$$= \int_{\mathbb{R}^2} \mathbf{1}_A(z + w) \frac{dw}{|w|} \quad \text{(change of variable)}$$

$$= \int_{[0, \pi]} \int_{\mathbb{R}} \mathbf{1}_A(z + r(\cos \theta, \sin \theta)) \, dr \, d\theta \quad \text{(polar coordinates)}$$

$$= \int_{[0, \pi]} |A \cap (z + L_\theta)| \, d\theta \quad \text{(where } L_\theta \text{ is the line with angle } \theta)$$

$$\in [C_1 \pi, C_2 \pi].$$
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3.
 Technical proof omitted.

- f is harmonic in the upper half-space $H = \{(x_1, x_2, x_3) : x_3 > 0\}$.
- Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.

- If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then $0 \leq f(z) \leq f(z') \leq C_2 \pi$.

- Harmonic in H, bounded and continuous in $H = \Rightarrow$ is the Poisson mean of $f|_{\mathbb{R}^2} = \Rightarrow C_1 \pi \leq f(z) \leq C_2 \pi$ for $z \in H$.

- Contradiction: Clearly $\lim_{t \to +\infty} f(x, y, t) = 0$.
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3.
 Technical proof omitted.
- Hence $C_1\pi \leq f(z) \leq C_2\pi$ everywhere on \mathbb{R}^2.
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3. Technical proof omitted.
- Hence $C_1\pi \leq f(z) \leq C_2\pi$ everywhere on \mathbb{R}^2.
- f is harmonic in the upper half-space

$$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3.
 Technical proof ommitted.
- Hence $C_1\pi \leq f(z) \leq C_2\pi$ everywhere on \mathbb{R}^2.
- f is harmonic in the upper half-space

$$H = \{ (x_1, x_2, x_3) : x_3 > 0 \}.$$

Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.
- If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

$$0 \leq f(z) \leq f(z') \leq C_2\pi.$$
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3.
 Technical proof omitted.
- Hence $C_1\pi \leq f(z) \leq C_2\pi$ everywhere on \mathbb{R}^2.
- f is harmonic in the upper half-space

 $$H = \{(x_1, x_2, x_3) : x_3 > 0\}.$$

 Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.
- If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

 $$0 \leq f(z) \leq f(z') \leq C_2\pi.$$

- Harmonic in H, bounded and continuous in \overline{H} is the Poisson mean of $f \upharpoonright \mathbb{R}^2$

 $C_1\pi \leq f(z) \leq C_2\pi$ for $z \in H$.

Contradiction: Clearly $\lim_{t \to +\infty} f(x, y, t) = 0$.
Line integrals bounded above and below, continued

- f is continuous on \mathbb{R}^3.
 Technical proof omitted.
- Hence $C_1\pi \leq f(z) \leq C_2\pi$ everywhere on \mathbb{R}^2.
- f is harmonic in the upper half-space

 $$H = \{ (x_1, x_2, x_3) : x_3 > 0 \}.$$
 Essentially because $\frac{1}{|x|}$ is harmonic in $\mathbb{R}^3 \setminus \{0\}$.
- If z' is the projection of $z \in \mathbb{R}^3$ onto \mathbb{R}^2 then

 $$0 \leq f(z) \leq f(z') \leq C_2\pi.$$

- Harmonic in H, bounded and continuous in \bar{H} implies
 is the Poisson mean of $f \upharpoonright \mathbb{R}^2$

 $$C_1\pi \leq f(z) \leq C_2\pi \text{ for } z \in H.$$
- Contradiction: Clearly $\lim_{t \to +\infty} f(x, y, t) = 0$.

The end.

Thank you.